Skip to main content
Log in

Spatiotemporal Profiles of Ethylbenzene Concentrations in Clay Soil During Its Electrokinetic Remediation

  • CHEMICAL PHYSICS OF ECOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The process of electrokinetic remediation (EKR) of clay soil containing an admixture of a typical organic pollutant, ethylbenzene, which is often found in it near gas stations and oil product storage facilities, is studied. Experimental measurement of the dependence of the concentration of this pollutant on time and the spatial coordinate during electrokinetic soil decontamination is carried out on a specially designed installation using the chromato-mass spectrometric method and a procedure close to that described in the guidelines of the MUK 4.1.1061-01. In order to intensify the EKR process of organic pollutant, the method of using an aqueous solution of two surfactants as the process fluid—anionite AB-17 and neonol AF 9-12—is applied. The experimental results are processed using the empirical-mathematical method described in the previous article and the function proposed in it. A good approximation of the experimental concentration dependences on both coordinates is demonstrated using this function: in all the experiments considered, the coefficients of determination R2 > 0.9986. The parameters of the approximating functions are calculated. The curves of the boundaries of the achievement of the concentration of ethylbenzene in soil samples of the level of the maximum permissible concentration (MPC) ≤ 0.5 mg/kg in the EKR process are determined. Based on these data, practical recommendations are proposed for choosing the conditions and modes of conducting the EKR process, which minimize the time and financial costs and improve its quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, A. V. Bloshenko, I. P. Tikhonov, and A. M. Skryl’nikov, Russ. J. Phys. Chem. B 11, 543 (2017). https://doi.org/10.1134/S199079311704008X

    Article  CAS  Google Scholar 

  2. I. V. Kumpanenko, N. A. Ivanova, N. Yu. Kovaleva, N. A. Sakharova, O. V. Shapovalova, and A. V. Roshchin, Russ. J. Phys. Chem. B 16, 738 (2022).

    Article  CAS  Google Scholar 

  3. I. V. Kumpanenko, N. A. Ivanova, O. V. Shapovalova, et al., Russ. J. Phys. Chem. B 16 (5) (2022, in press).

  4. Y. B. Acar and A. N. Alshawabkeh, Environ. Sci. Technol. 27, 2638 (1993). https://doi.org/10.1021/es00049a002

    Article  CAS  Google Scholar 

  5. Y. B. Acar, R. J. Galeb, A. N. Alshawabkeh, et al., J. Hazard. Mater. 40, 117 (1995). https://doi.org/10.1016/0304-3894(94)00066-P

    Article  CAS  Google Scholar 

  6. A. T. Yeung, Sep. Purif. Technol. 79, 124 (2011). https://doi.org/10.1016/j.seppur.2011.01.022

    Article  CAS  Google Scholar 

  7. D. L. Wise, D. J. Trantolo, E. J. Cichon, et al., Remediation Engineering of Contaminated Soils, Environmental Science and Pollution (CRC, New York, 2000).

    Book  Google Scholar 

  8. W. Liu, J. Differ. Equat. 246, 428 (2009). https://doi.org/10.1016/j.jde.2008.09.010

    Article  Google Scholar 

  9. A. N. Alshawabkeh and Y. B. Acar, J. Geotech. Eng. 122, 186 (1996). https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(186)

    Article  CAS  Google Scholar 

  10. Y. B. Acar, A. N. Alshawabkeh, and R. A. Parker, Report No. EPA/600/R-97/054 (U. S. Environ. Protect. Agency, Cincinnati, OH, 1997).

  11. P. Tsai, C.-H. Huang, and E. Lee, Langmuir 27, 13481 (2011). https://doi.org/10.1021/la203240b

    Article  CAS  Google Scholar 

  12. Yu. A. Leikin, I. V. Kumpanenko, A. V. Roshchin, et al., Ross. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva) 57 (1), 52 (2013).

  13. C. C. West, Environ. Sci. Technol. 26, 2324 (1992). https://doi.org/10.1021/es00036a002

    Article  CAS  Google Scholar 

  14. J. W. Mercer and R. M. Cohen, J. Contam. Hydrol. 6, 107 (1990). https://doi.org/10.1016/0169-7722(90)90043-G

    Article  CAS  Google Scholar 

  15. D. Lestana, C. Luob, and X. Lib, Environ. Pollut. 153, 3 (2008). https://doi.org/10.1016/j.envpol.2007.11.015

    Article  CAS  Google Scholar 

  16. M. J. Rosen, J. Am. Oil Chem. Soc. 66, 1840 (1989). https://doi.org/10.1007/BF02660759

    Article  CAS  Google Scholar 

  17. C. Yuan and C.-H. Weng, Chemosphere 57, 225 (2004). https://doi.org/10.1016/j.chemosphere.2004.05.02

    Article  CAS  Google Scholar 

  18. MUK (Guidelines) 4.1.1061-01 (2001).

  19. A. P. Perez and N. R. Eugenio, JRC Tech. Rep. EC (2018), p. 1. doi

  20. I. V. Kumpanenko, N. A. Ivanova, N. Yu. Kovaleva, N. A. Sakharova, K. A. Shiyanova, and A. V. Roshchin, Russ. J. Phys. Chem. B 15, 131 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a state assignment for Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences on the topic 1.1., no. 122040500058-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Shiyanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumpanenko, I.V., Shiyanova, K.A., Panin, E.O. et al. Spatiotemporal Profiles of Ethylbenzene Concentrations in Clay Soil During Its Electrokinetic Remediation. Russ. J. Phys. Chem. B 16, 1164–1171 (2022). https://doi.org/10.1134/S1990793122060185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122060185

Keywords:

Navigation