Skip to main content
Log in

Dispersion Analysis of Diffuse Scattering Spectra Obtained by a Quantum-Cascade Laser as a Means of Substance Identification

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A mathematical model of damped harmonic oscillators based on the Lorentz equations for calculating the optical characteristics of a medium is considered. Using an experimental setup built on the basis of an infrared quantum-cascade laser in the wavelength range of 5.3–12.8 μm with a peak power of up to 150 mW, diffuse scattering spectra of individual potassium perchlorate crystals are recorded. The transmission spectra are calculated using the Kramers–Kronig relations and the recorded scattering spectra. The model parameters are obtained based on the Lorentz equations for the scattering spectra of potassium perchlorate, which makes it possible to calculate the transmission spectra. The latter can be used to detect substances, including those in trace amounts, on various surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. B. Vintaykin, I. S. Golyak, P. A. Korolev, A. N. Morozov, S. E. Tabalin, and L. N. Timashova, Russ. J. Phys. Chem. B 15, 413 (2021). https://doi.org/10.1134/S1990793121030131

    Article  CAS  Google Scholar 

  2. V. D. Maiorov, G. I. Voloshenko, and I. S. Kislina, Russ. J. Phys. Chem. B 12, 185 (2018). https://doi.org/10.1134/S1990793118020197

    Article  CAS  Google Scholar 

  3. V. A. Trofimov and S. A. Varentsova, Appl. Opt. 55, 9605 (2016). https://doi.org/10.1364/AO.55.009605

    Article  PubMed  CAS  Google Scholar 

  4. M. Yasuura and M. Fujimaki, Sci. Rep. 6 (1), 1 (2016). https://doi.org/10.1038/srep39241

    Article  CAS  Google Scholar 

  5. B. D. Kevadiya, J. Machhi, J. Herskovitz, et al., Nat. Mater. 20, 593 (2021). https://doi.org/10.1038/s41563-020-00906-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. A. A. Mal’tsev, Molecular Spectroscopy (Mosk. Gos. Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  7. A. N. Morozov and S. I. Svetlichnyi, Fundamentals of Fourier Spectroradiometry, 2nd ed. (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  8. I. L. Fufurin, P. E. Shlygin, A. A. Pozvonkov, I. B. Vintaikin, S. I. Svetlichnyi, D. A. Barkhatov, O. A. Nebritova, and A. N. Morozov, Russ. J. Phys. Chem. B 15, 911 (2021). https://doi.org/10.1134/S1990793121050146

    Article  CAS  Google Scholar 

  9. I. V. Kochikov, A. N. Morozov, and I. L. Fufurin, Komp’yut. Opt. 36, 554 (2012).

    Google Scholar 

  10. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, N. N. Bezuglov, A. N. Klyucharev, O. P. Borchevkina, S. O. Adamson, Yu. A. Dyakov, I. V. Karpov, I. I. Morozov, L. V. Eppelbaum, and M. G. Golubkov, Russ. J. Phys. Chem. B 15, 362 (2021). https://doi.org/10.1134/S1990793121020056

    Article  CAS  Google Scholar 

  11. A. Portnov, S. Rosenwaks, and I. Bar, Appl. Phys. Lett. 93, 41115 (2008). https://doi.org/10.1063/1.2963981

    Article  CAS  Google Scholar 

  12. A. V. Pavlikov, E. A. Konstantinova, and I. G. Kalinina, and S. M. Shebanov, Russ. J. Phys. Chem. B 13, 744 (2019). https://doi.org/10.1134/S1990793119050208

    Article  CAS  Google Scholar 

  13. I. B. Vintaykin, I. S. Golyak, I. S. Golyak, A. A. Esakov, A. N. Morozov, and S. E. Tabalin, Russ. J. Phys. Chem. B 14, 752 (2020). https://doi.org/10.1134/S1990793120050255

    Article  CAS  Google Scholar 

  14. Sh. Sh. Nabiev, S. V. Ivanov, A. S. Lagutin, L. A. Palkina, S. V. Malashevich, O. A. Ol’khov, and M. G. Golubkov, Russ. J. Phys. Chem. B 13, 727 (2019). https://doi.org/10.1134/S1990793119050191

    Article  CAS  Google Scholar 

  15. D. E. Matthews and J. M. Hayes, Anal. Chem. 50, 1465 (1978). https://doi.org/10.1021/ac50033a022

    Article  CAS  Google Scholar 

  16. J. R. Castro-Suarez, M. Hidalgo-Santiago, and S. P. Hernández-Rivera, Appl. Spectrosc. 69, 1023 (2015). https://doi.org/10.1366/14-07626

    Article  PubMed  CAS  Google Scholar 

  17. A. Reyes-Reyes, R. C. Horsten, H. P. Urbach, et al., Anal. Chem. 87, 507 (2015). https://doi.org/10.1021/ac504235e

    Article  PubMed  CAS  Google Scholar 

  18. I. S. Golyak, A. N. Morozov, S. I. Svetlichnyi, A. S. Tabalina, and I. L. Fufurin, Russ. J. Phys. Chem. B 13, 557 (2019). https://doi.org/10.1134/S1990793119040055

    Article  CAS  Google Scholar 

  19. I. L. Fufurin, A. S. Tabalina, A. N. Morozov, et al., Opt. Eng. 59, 061621 (2020). https://doi.org/10.1117/1.OE.59.6.061621

    Article  CAS  Google Scholar 

  20. J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, New York, 2006).

    Google Scholar 

  21. X. Yuan, K. Luo, N. Liu, et al., Phys. Chem. Chem. Phys. 20, 20779 (2018). https://doi.org/10.1039/C8CP01550C

    Article  PubMed  CAS  Google Scholar 

  22. A. A. Karpova and A. S. Sherstobitova, Nauch.-Tekh. Vestn. Inform. Tekhnol. Mekh. Opt. 17, 820 (2017). https://doi.org/10.17586/2226-1494-2017-17-5-820-825

    Article  Google Scholar 

  23. C. K. Wu and G. Andermann, J. Opt. Soc. Am. 58, 519 (1968). https://doi.org/10.1364/JOSA.58.000519

    Article  CAS  Google Scholar 

  24. W. N. Hansen and W. A. Abdou, J. Opt. Soc. Am. 67, 1537 (1977). https://doi.org/10.1364/JOSA.67.001537

    Article  CAS  Google Scholar 

  25. R. H. Young, J. Opt. Soc. Am. 67, 520 (1977). https://doi.org/10.1364/JOSA.67.000520

    Article  CAS  Google Scholar 

  26. T. S. Robinson, Proc. Phys. Soc., Sect. B 65, 910 (1952).

    Google Scholar 

  27. G. Andermann, A. Caron, and D. A. Dows, J. Opt. Soc. Am. 55, 1210 (1965). https://doi.org/10.1364/JOSA.55.001210

    Article  CAS  Google Scholar 

  28. A. M. Efimov, Optical Properties of Materials and Mechanisms of their Formation (ITMO, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  29. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Allowance for Spatial Dispersion and Exciton Theory (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  30. D. A. Samsonov, A. S. Tabalina, and I. L. Fufurin, J. Phys.: Conf. Ser. 918, 012034 (2017). https://doi.org/10.1088/1742-6596/918/1/012034

    Article  CAS  Google Scholar 

  31. NIST Chemistry WebBook. https://webbook.nist.gov/ chemistry/.

  32. K. Ohta and H. Ishida, Appl. Spectrosc. 42, 952 (1988). https://doi.org/10.1366/0003702884430380

    Article  CAS  Google Scholar 

  33. I. L. Fufurin, D. R. Anfimov, E. R. Kareva, et al., Opt. Eng. 60, 082016 (2021). https://doi.org/10.1117/1.OE.60.8.082016

    Article  CAS  Google Scholar 

  34. I. L. Fufurin, P. V. Berezhanskiy, I. S. Golyak, et al., Materials 15, 2984 (2022). https://doi.org/10.3390/ma15092984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was conducted as part of the Priority-2030 program of strategic academic leadership approved by Decree of the Government of the Russian Federation of May 13, 2021, No. 729.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Anfimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anfimov, D.R., Golyak, I.S., Nebritova, O.A. et al. Dispersion Analysis of Diffuse Scattering Spectra Obtained by a Quantum-Cascade Laser as a Means of Substance Identification. Russ. J. Phys. Chem. B 16, 834–838 (2022). https://doi.org/10.1134/S1990793122050165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122050165

Keywords:

Navigation