Skip to main content
Log in

The Effect of the Magnesium Content and Mechanical Activation on Combustion in the Ni + Al + Mg System

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of the magnesium content and mechanical activation (MA) of the Ni + Al + Mg system under study on the elongation of samples during combustion, the maximum temperature and combustion rate, the size of composite particles and the yield of the mixture after activation, and the phase composition and morphology of the reaction products is studied. The synthesis parameters at which the triple phase of Ni2Mg3Al are determined. It is experimentally shown that activation leads to an increase in the reaction rate and reduces the maximum combustion temperature of the mixture. With an increase in the magnesium content in the Ni + Al + Mg mixture, the combustion rate first increases (when the Mg content is 10%), then decreases, and the maximum reaction temperature decreases over the entire range of values studied. The observed dependences of the average size of composite particles, the yield of the mixture after MA, and elongation of the samples during combustion on the Mg content in the Ni + Al + Mg mixture are not monotonic. MA leads to the formation of highly porous synthesis products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. S. Pogozhev, V. N. Sanin, D. M. Ikornikov, et al., Int. J. Self-Propag. High-Temp. Synth. 25 (3), 186 (2016). https://doi.org/10.3103/S1061386216030092

    Article  CAS  Google Scholar 

  2. V. N. Sanin, D. M. Ikornikov, D. E. Andreev, et al., Int. J. Self-Propag. High-Temp. Synth. 23 (4), 232 (2014). https://doi.org/10.3103/S1061386214040098

    Article  CAS  Google Scholar 

  3. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  4. J. Wang, J. Alloys Compd. 456, 139 (2008).

    Article  CAS  Google Scholar 

  5. N. A. Kochetov and A. E. Sychev, Combust. Explos., Shock Waves 55, 686 (2019). https://doi.org/10.1134/S001050821906008X

    Article  Google Scholar 

  6. N. A. Kochetov and A. E. Sychev, Combust. Explos., Shock Waves 56, 520 (2020). https://doi.org/10.1134/S0010508220050020

    Article  Google Scholar 

  7. S. Manladan, F. Yusof, S. Ramesh, et al., Int. J. Adv. Manuf. Technol. 86, 1805 (2016). https://doi.org/10.1007/s00170-015-8258-9

    Article  Google Scholar 

  8. P. A. Lazarev, A. E. Sychev, N. A. Kochetov, and N. V. Sachkova, Inorg. Mater. 57, 324 (2021). https://doi.org/10.1134/S0020168521030079

    Article  CAS  Google Scholar 

  9. H. C. Kim and T. J. Wallington, Environ. Sci. Technol. 47, 6089 (2013). https://doi.org/10.1021/es3042115

    Article  CAS  PubMed  Google Scholar 

  10. F. Humpenöder, A. Popp, M. Stevanovic, et al., Environ. Sci. Technol. 49, 6731 (2015). https://doi.org/10.1021/es506201

    Article  PubMed  Google Scholar 

  11. R. Modaresi, S. Pauliuk, A. N. Løvik, et al., Environ. Sci. Technol. 48, 10776 (2014). https://doi.org/10.1021/es502930

    Article  CAS  PubMed  Google Scholar 

  12. T. Graf, C. Felser, and S. S. P. Parkin, Prog. Solid State Chem. 39 (1), 1 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001

    Article  CAS  Google Scholar 

  13. Sreenivasa P. V. Reddy and V. Kanchana, J. Alloys Compd. 616, 527 (2014). https://doi.org/10.1016/J.JALLCOM.2014.07.020

    Article  Google Scholar 

  14. W. Lin and A. J. Freeman, Phys. Rev. B 45, 61 (1992). https://doi.org/10.1103/PhysRevB.45.61

    Article  CAS  Google Scholar 

  15. M. A. Korchagin, V. Yu. Filimonov, V. E. Smirnov, and N. Z. Lyakhov, Combust. Explos., Shock Waves 46, 41 (2010).

    Article  Google Scholar 

  16. M. A. Korchagin, Combust. Explos., Shock Waves 51, 578 (2015). https://doi.org/10.1134/S0010508215050093

    Article  Google Scholar 

  17. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., Fiz. Goreniya Vzryva 39 (1), 51 (2003).

    CAS  Google Scholar 

  18. N. A. Kochetov, Russ. J. Phys. Chem. B 10, 639 (2016). https://doi.org/10.1134/S1990793116040047

    Article  CAS  Google Scholar 

  19. N. A. Kochetov and B. S. Seplyarskii, Combust. Explos., Shock Waves 56, 308 (2020). https://doi.org/10.1134/S0010508220030077

    Article  Google Scholar 

  20. N. A. Kochetov, B. S. Seplyarskii, and A. S. Shchukin, Combust. Explos., Shock Waves 55, 300 (2019). https://doi.org/10.1134/S0010508219030080

    Article  Google Scholar 

  21. N. A. Kochetov and B. S. Seplyarsky, Russ. J. Phys. Chem. B 14, 791 (2020). https://doi.org/10.1134/S199079312005005X

    Article  CAS  Google Scholar 

  22. N. A. Kochetov and B. S. Seplyarskii, Russ. J. Phys. Chem. B 12, 883 (2018). https://doi.org/10.1134/S1990793118050172

    Article  CAS  Google Scholar 

  23. N. A. Kochetov and I. A. Studenikin, Russ. J. Phys. Chem. B 12, 77 (2018). https://doi.org/10.1134/S1990793118010086

    Article  CAS  Google Scholar 

  24. C. E. Wen, K. Kobayashi, A. Sugiuama, et al., J. Mater. Sci. 35, 2099 (2000).

    Article  CAS  Google Scholar 

  25. A. S. Rogachev and A. S. Mukas’yan, Combust. Explos., Shock Waves 46, 243 (2010).

    Article  Google Scholar 

  26. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, et al., Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).

  27. B. S. Seplyarskii, Dokl. Phys. Chem. 396, 130 (2004).

    Article  CAS  Google Scholar 

  28. B. S. Seplyarskii, N. I. Abzalov, R. A. Kochetkov, and T. G. Lisina, Russ. J. Phys. Chem. B 15, 242 (2021). https://doi.org/10.1134/S199079312102010X

    Article  CAS  Google Scholar 

  29. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, and N. I. Abzalov, Russ. J. Phys. Chem. B 14, 52 (2020). https://doi.org/10.1134/S1990793120010133

    Article  CAS  Google Scholar 

  30. B. S. Seplyarskii, R. A. Kochetkov, and T. G. Lisina, Russ. J. Phys. Chem. B 13, 267 (2019). https://doi.org/10.1134/S1990793119020064

    Article  CAS  Google Scholar 

  31. S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 25, 210 (2016). https://doi.org/10.3103/S1061386216040105

    Article  CAS  Google Scholar 

  32. S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 24, 90 (2015). https://doi.org/10.3103/S1061386215020107

    Article  CAS  Google Scholar 

  33. N. A. Kochetov and A. E. Sytschev, Mater. Chem. Phys. 257, 123727 (2021). https://doi.org/10.1016/j.matchemphys.2020.123727

    Article  CAS  Google Scholar 

  34. O. K. Kamynina, A. S. Rogachev, A. E. Sytschev, et al., Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193 (2004).

    CAS  Google Scholar 

  35. O. K. Kamynina, A. S. Rogachev, and L. M. Umarov, Fiz. Goreniya Vzryva 39 (5), 69 (2003).

    CAS  Google Scholar 

  36. Landolt-Börnstein, Group IV: Physical Chemistry, Vol. 11: Ternary Alloy Systems, Subvol. A: Light Metal Systems (Springer, Berlin, 2005), Part 3, p. 154. https://doi.org/10.1007/10915998_16

Download references

ACKNOWLEDGMENTS

The author thanks I.D. Kovalev, O.D. Boyarchenko, R.A. Kochetkov, S.G. Vadchenko, M.L. Busurina, and N.I. Mukhina for their help in the experiments, as well as B.S. Seplyarsky and A.S. Shchukin for their interest and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kochetov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A. The Effect of the Magnesium Content and Mechanical Activation on Combustion in the Ni + Al + Mg System. Russ. J. Phys. Chem. B 16, 621–628 (2022). https://doi.org/10.1134/S1990793122040078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040078

Keywords:

Navigation