Skip to main content
Log in

Pitch-Based Carbon Fibers: Manufacturing Status and Modification of Properties

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper analyzes the state of production of carbon fiber (CF) materials, including pitch-based CFs. It is shown that in Russia there is a significant potential for industrial production of pitch-based CFs. Considerable attention is paid to possible ways of modifying pitch-based CFs in order to improve their electrical properties. The efficiency of using gaseous bromine to reduce the electrical resistance of pitch-based CFs is shown. Based on the analysis of X-ray and Raman spectroscopy data, it is shown that a 7-fold decrease in electrical resistance during bromination is related to changes in the fiber structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. G. Yuan, Z. Xue, Z. Cui, et al., ACS Omega 5, 21948 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Yu. Anpilova, E. E. Mastalygina, N. P. Khrameeva, and A. A. Popov, Russ. J. Phys. Chem. B 14, 176 (2020). https://doi.org/10.1134/S1990793120010029

    Article  CAS  Google Scholar 

  3. A. M. Kuperman, Yu. A. Gorbatkina, and R. A. Turusov, Russ. J. Phys. Chem. B 6, 553 (2012).

    Article  CAS  Google Scholar 

  4. C. J. B. Guimarães, A. P. Aguiar, and A. T. de Castro, Polimeros 31, e2021011 (2021). https://doi.org/10.1590/0104-1428.08720

    Article  Google Scholar 

  5. B.-J. Kim, T. Kotegawa, Y. Eom, et al., Carbon 99, 649 (2016). https://doi.org/10.1016/j.carbon.2015.12.082

    Article  CAS  Google Scholar 

  6. H. Shimanoe, S. Ko, Y.-P. Jeon, et al., Polymers 11, 1911 (2019). https://doi.org/10.3390/polym11121911

    Article  CAS  PubMed Central  Google Scholar 

  7. G. Özsin and A. E. Pütün, J. Fac. Eng. Architect. Gazi Univ. 33, 1433 (2018). https://doi.org/10.17341/gazimmfd.4164440

    Article  Google Scholar 

  8. B.-J. Kim, H. Kil, N. Watanabe, et al., Curr. Org. Chem. 17, 1463 (2013). https://doi.org/10.2174/1385272811317130013

    Article  CAS  Google Scholar 

  9. G. Ni, W. Jiang, and W. Shen, Chem. Sel. 4, 3690 (2019). https://doi.org/10.1002/slct.201803764

    Article  CAS  Google Scholar 

  10. J. Liu, X. Chen, D. Liang, et al., Energy Sources, Part A (2020). https://doi.org/10.1080/15567036.2020.1806952

    Book  Google Scholar 

  11. Y. Arai, in High-Performance and Specialty Fibers (Soc. Fiber Sci. Technol. Tokyo, Springer, Japan, 2016), Chap. 21, p. 343. https://doi.org/10.1007/978-4-431-55203-1_21

  12. T. H. Lim and S. Y. Yeo, Sci. Rep. 7, 4733 (2017). https://doi.org/10.1038/s41598-017-05192-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Kim, Chem. J., No. 10, 64 (2014). http://tcj.ru/wp-content/uploads/2014/11/2014_10_63-73_PLAST-Syre.pdf.

  14. N. V. Korneeva, V. V. Kudinov, I. K. Krylov, and V. I. Mamonov, Russ. J. Phys. Chem. B 13, 838 (2019). https://doi.org/10.1134/S1990793119050038

    Article  CAS  Google Scholar 

  15. P. Morgan, Carbon Fibers and their Composites (Taylor and Francis Group, CRC, Boca Raton, 2005).

  16. A. T. Mukhamerzyanov, A. A. Mukhamerzyanova, R. N. Gimaev, et al., Vestn. Bashk. Univ. 20, 1218 (2015).

    Google Scholar 

  17. O. I. Doshlov, V. V. Kondrat’ev, A. A. Ugap’ev, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol., No. 2 (7), 31 (2014).

  18. O. F. Sidorov and A. N. Seleznev, Ros. Khim. Zh. 50 (1), 16 (2006).

    CAS  Google Scholar 

  19. T. Matsumoto, Pure Appl. Chem. 57, 1553 (1985).

    Article  CAS  Google Scholar 

  20. D. M. Riggs, R. J. Shuford, and R. W. Lewis, in Handbook of Composites, Ed. by G. Lubin (Van Nostrand Reinhold, New York, 1982), p. 196.

    Google Scholar 

  21. G. Yuan, X. Li, X. Xiong, et al., Carbon 115, 59 (2016). https://doi.org/10.1016/j.carbon.2016.12.040

    Article  CAS  Google Scholar 

  22. M. R. Alexander and F. R. Jones, Carbon 32, 785 (1994).

    Article  CAS  Google Scholar 

  23. F. Severini, L. Formaro, M. Pegoraro, et al., Carbon 40, 735 (2002).

    Article  CAS  Google Scholar 

  24. S. Lee, T. R. Kim, A. A. Ogale, et al., Synth. Met. 157, 644 (2007).

    Article  CAS  Google Scholar 

  25. X. Bing, X. Wang, and Y. Lu, Appl. Surf. Sci. 253, 2695 (2006).

    Article  Google Scholar 

  26. Y. J. Ma, J. L. Wang, and X. P. Cai, Int. J. Electrochem. Sci. 8, 2806 (2013).

    CAS  Google Scholar 

  27. R. M. Alway-Cooper, D. P. Anderson, and A. A. Ogale, Carbon 59, 40 (2013). https://doi.org/10.1016/j.carbon.2013.02.048

    Article  CAS  Google Scholar 

  28. M. S. Dresselhaus and M. Endo, in Graphite Intercalation Compounds II: Transport and Electronic Properties, Ed. by H. Zabel and S. A. Solin, Vol. 18 of Springer Ser. Mater. Sci. (Springer, Berlin, 1992), p. 347.

  29. J. Shioy, H. Matsubara, and S. Murakami, Synth. Met. 14, 113 (1986).

    Article  Google Scholar 

  30. J. G. Hooley and V. R. Deitz, Carbon 16, 251 (1978).

    Article  CAS  Google Scholar 

  31. M. S. Dresslhaus and G. Dresslhaus, Adv. Phys. 36, 139 (1981). https://doi.org/10.1080/00018738100101367

    Article  Google Scholar 

  32. C. T. Ho and D. D. L. Chung, Carbon 28, 831 (1990). https://doi.org/10.1016/0008-6223(90)90331-R

    Article  CAS  Google Scholar 

  33. I. V. Klimenko, T. S. Zhuravleva, and T. Jawhari, Synth. Met. 86, 2337 (1997). https://doi.org/10.1016/S0379-6779(97)81150-2

    Article  CAS  Google Scholar 

  34. B. J. Kim, Y. Eom, O. Kato, et al., Carbon 77, 747 (2014). https://doi.org/10.1016/j.carbon.2014.05.079

    Article  CAS  Google Scholar 

  35. Y. O. Choi and K. S. Yang, Fibers Polym. 2, 178 (2001). https://doi.org/10.1007/BF02875342

    Article  CAS  Google Scholar 

  36. D. Liang, D. Liu, S. Yang, et al., Polymers 12, 3059 (2020). https://doi.org/10.3390/polym12123059

    Article  CAS  PubMed Central  Google Scholar 

  37. R. B. Mathur, I. P. Bahl, A. Kannan, et al., Carbon 34, 1215 (1996). https://doi.org/10.1016/0008-6223(96)00089-9

    Article  CAS  Google Scholar 

  38. I. V. Klimenko and T. S. Zhuravleva, Mater. Today: Proc. 5, 25987 (2018). https://doi.org/10.1016/j.matpr.2018.08.017P.25987

    Article  CAS  Google Scholar 

  39. I. V. Klimenko, A. N. Shchegolikhin, and T. S. Zhuravleva, Synth. Met. 71, 1773 (1995).

    Article  CAS  Google Scholar 

  40. J. Gaier, N. F. Ditmars, and A. R. Dillon, Carbon 43, 189 (2005). https://doi.org/10.1016/j.carbon.2004.09.005

    Article  CAS  Google Scholar 

  41. D. A. Jaworske, J. R. Gaier, C. Maciag, et al., Carbon 25, 779 (1987).

    Article  CAS  Google Scholar 

  42. I. V. Klimenko, T. S. Zhuravleva, and S. B. Bibikov, Polymer Sci., Ser. A 42, 225 (2000).

    Google Scholar 

  43. E. Jacquesa, M. H. Kjell, D. Zenkerta, et al., Carbon 59, 246 (2014). https://doi.org/10.1016/j.carbon.2013.03.015

    Article  CAS  Google Scholar 

  44. Y. Ouchi, A. Takenaka, T. Kinumoto, et al., Carbon 55, 372 (2013). https://doi.org/10.1016/j.carbon.2012.12.040

    Article  Google Scholar 

  45. W. Johannisson, R. Harnden, and D. Zenkert, Proc. Natl. Acad. Sci. U. S. A. 117, 7658 (2020). https://doi.org/10.1073/pnas.1921132117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Ghosh, U. Bhattacharjee, S. Patchaiyappan, et al., Adv. Energy Mater. 11, 2100135 (2021). https://doi.org/10.1002/aenm.202100135

    Article  CAS  Google Scholar 

  47. G. Fredi, S. Jeschke, A. Boulaoued, et al., Multifunction. Mater. 1, 015003 (2018). https://doi.org/10.1088/2399-7532/aab707

    Article  CAS  Google Scholar 

  48. M. V. Grishin, A. K. Gatin, S. Yu. Sarvadii, V. G. Slutskii, B. R. Shub, A. I. Kulak, T. N. Rostovshchikova, S. A. Gurevich, V. M. Kozhevin, and D. A. Yavsin, Russ. J. Phys. Chem. B 14, 697 (2020). https://doi.org/10.1134/S1990793120040065

    Article  CAS  Google Scholar 

  49. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  50. P. V. Huong, Solid State Commun. 88, 23 (1993).

    Article  CAS  Google Scholar 

  51. F. Tebbe, R. Harlow, D. Chase, et al., Science (Washington, DC, U. S.) 256, 822 (1992).

    Article  CAS  Google Scholar 

  52. M. S. Dresselhaus and G. Dresselhaus, Light Scattering in Solids III, Ed. by M. Cardona and G. Guntherodt, Vol. 51 of Topics in Appl. Phys. (Springer, Berlin, 1982).

  53. M. S. Dresselhaus, G. Dresselhaus, R. Sugihara, et al., Graphite Fibers and Filaments, Vol. 5 of Springer Proc. Mater. Sci. (Springer, Berlin, 1988).

  54. I. V. Klimenko, Yu. M. Korolev, and T. S. Zhuravleva, Vysokomol. Soedin., A 43, 357 (2001).

  55. S. S. Mohindar and A. S. Pavlovic, Carbon 31, 557 (1993).

    Article  Google Scholar 

  56. M. Endo, C. Kim, T. Karaki, et al., Carbon 36, 1633 (1998).

    Article  CAS  Google Scholar 

  57. L. Rezende, A. Oliveira Chaves, and S. L. L. Moraes, Braz. J. Geol. 51 (1), e20200083 (2021). https://doi.org/10.1590/2317-4889202120200083

    Article  Google Scholar 

  58. M. Tagiri, Y. Yago, and A. Tanaka, Island Arc. 9, 188 (2000). https://doi.org/10.1046/j.1440-1738.2000.00272.x

    Article  CAS  Google Scholar 

  59. N. Zs. Selyakow, Phys. 31, 439 (1925).

    Google Scholar 

  60. B. E. Warren, Phys. Rev. 59, 693 (1941).

    Article  CAS  Google Scholar 

  61. A. Pacault, Chemistry and Physics of Carbon, Ed. by L. Walker, Jr. (Marcel Dekker, New York, 1971), Vol. 7.

    Google Scholar 

  62. M. Tagiri, J. Jpn. Assoc. Min. Petr. Econ. Geol. 76 (11), 345 (1981). https://doi.org/10.2465/ganko1941.76.345

    Article  CAS  Google Scholar 

  63. A. F. Lukovnikov, Yu. M. Korolev, and G. S. Golovan, Khim. Tverd. Tela, No. 5, 3 (1996).

    Google Scholar 

Download references

Funding

This study was carried out as part of a state assignment (registration number 01201253304) of Institute of Biochemical Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Klimenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, I.V. Pitch-Based Carbon Fibers: Manufacturing Status and Modification of Properties. Russ. J. Phys. Chem. B 16, 148–154 (2022). https://doi.org/10.1134/S1990793122010225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010225

Keywords:

Navigation