Skip to main content
Log in

Optimized Molecular Geometries, Internal Coordinates, Vibrational Analysis, Thermodynamic Properties, First Hyperpolarizability and HOMO–LUMO Analysis of Duroquinone Using Density Functional Theory and Hartree–Fock Method

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The FTIR and FT-Raman spectra of Duroquinone have been recorded in the regions 4000–400 and 3500–50 cm–1 respectively. Using the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound has been carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by the density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of Duroquinone is also reported. The thermodynamic parameters and first hyperpolarizability are calculated using DFT method. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. M. Lü, S. V. Rosokha, I. S. Neretin, and J. K. Kochi, J. Am. Chem. Soc. 128, 16708 (2006).

    Article  Google Scholar 

  2. L. I. Smith, Org. Synth.; Coll. 2, 254 (1943).

    Google Scholar 

  3. H. W. Sternberg, R. Markby, and I. Wender, J. Am. Chem. Soc. 80, 1009 (1958).

    Article  CAS  Google Scholar 

  4. A. G. Pocinki and R. E. Blankenship, FEBS Lett. 147, 115 (1982).

    Article  CAS  Google Scholar 

  5. A. Brunmark and E. Cadenas, Free Radic. Biol. Med. 7, 435 (1989).

    Article  CAS  Google Scholar 

  6. B. C. Duffy, PhD Thesis (2012).

  7. M. J. Frisch, G. W. Trucks, H. B. Schlegal, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, et al., Gaussian 09, Revision A.02 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  8. P. Pulay, G. Fogarasi, G. Pongor, and J. E. Boggs, J. Am. Chem. Soc. 105, 7037 (1983).

    Article  CAS  Google Scholar 

  9. G. Rauhut and P. Pulay, J. Phys. Chem. 99, 3093 (1995).

    Article  CAS  Google Scholar 

  10. A. Frisch, A. B. Nielson, and A. J. Holder, Gaussview User Manual (Gaussian Inc., Pittsburgh, PA, 2009).

    Google Scholar 

  11. L. N. Wang, X. Q. Wang, G. H. Zhang, et al., J. Cryst. Growth 327, 133 (2011).

    Article  CAS  Google Scholar 

  12. G. Fogarasi and P. Puley, Vibrational Spectra and Structure, Ed. by J. R. During (Elsevier, Amsterdam, 1985), Vol. 14, p. 125.

    Google Scholar 

  13. G. Fogarasi, X. Zhou, P. W. Taylor, and P. Puley, J. Am. Chem. Soc. 114, 8191 (1992).

    Article  CAS  Google Scholar 

  14. P. Anbarasu, M. Arivazhagan, and V. Balachandran, Indian J. Pure Appl. Phys. 50, 178 (2012).

    Google Scholar 

  15. W. B. Tzeng, K. Narayanan, J. L. Lin, and C. C. Tung, Spectrochim. Acta A 55, 153 (1998).

    Article  Google Scholar 

  16. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (Wiley, New York, 1994).

    Google Scholar 

  17. D. Sajan, J. Binoy, B. Pradeep, et al., Spectrochim. Acta, Part A 60, 173 (2004).

    Article  CAS  Google Scholar 

  18. S. George, Infrared and Raman Characteristics Group Frequencies—Tables and Charts, 3rd ed. (Wiley, Chichester, 2001).

    Google Scholar 

  19. B. Smith, Infrared Spectral Interpretation, A Systematic Approach (CRC, Washington DC, 1999).

    Google Scholar 

  20. P. Ramesh, S. Gunasekaran, and G. R. Ramkumar, Int. J. Curr. Res. Aca. Rev. 3 (11), 117 (2015).

    CAS  Google Scholar 

  21. C. Janaki1, E. Sailatha, S. Gunasekaran, and G. R. R. Kumar, Int. J. TechnoChem. Res. 2, 91 (2016).

  22. R. Yankova, S. Genieva, N. Halachev, and G. Dimitrova, J. Mol. Struct. 1106, 82 (2016).

    Article  CAS  Google Scholar 

  23. K. Druz bicki, E. Mikuli, and M. D. Ossowska-Chrusciel, Vibr. Spectrosc. 52, 54 (2010).

  24. P. Vennila, M. Govindaraju, G. Venkatesh, and C. Kamal, J. Mol. Struct. 1111, 151 (2016).

    Article  CAS  Google Scholar 

  25. S. Ramalingam and S. Periandy, Spectrochim. Acta, A 78, 835 (2011).

    Article  CAS  Google Scholar 

  26. D. Sajan, J. Hubert, V. S. Jayakumar, and J. Zaleski, J. Mol. Struct. 785, 43 (2006).

    Article  CAS  Google Scholar 

  27. Y. X. Sun, Q. L. Hao, W. X. Wei, et al., J. Mol. Struct.: THEOCHEM 904, 74 (2009).

    Article  CAS  Google Scholar 

  28. Sarvendra Kumar, Surbhi, and M. K. Yadav, Asian J. Chem. 29, 2241 (2017).

    Article  CAS  Google Scholar 

  29. J. Teotia, S. Kumar, and Surbhi, Asian J. Chem. 28, 2204 (2016).

    Article  CAS  Google Scholar 

  30. S. Demir, F. Tinmaz, N. Dege, and I. O. Ilhan, J. Mol. Struct. 1108, 637 (2016).

    Article  CAS  Google Scholar 

  31. R. Mathammal, K. Sangeetha, M. Sangeetha, R. Mekala, and S. Gadheeja, J. Mol. Struct. 1120, 1 (2016).

    Article  CAS  Google Scholar 

  32. Sarvendra Kumar, Surbhi, and M. K. Yadav, Russ. J. Phys. Chem. B 12, 383 (2018).

    CAS  Google Scholar 

  33. A. V. Lobanov and M. Ya. Melnikov, Russ. J. Phys. Chem. B 13, 565 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial and technical support from Amity University Noida, India. The authors also acknowledge the technical support from Department of Physics, Jawaharlal University Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvendra Kumar, Surbhi & Yadav, M.K. Optimized Molecular Geometries, Internal Coordinates, Vibrational Analysis, Thermodynamic Properties, First Hyperpolarizability and HOMO–LUMO Analysis of Duroquinone Using Density Functional Theory and Hartree–Fock Method. Russ. J. Phys. Chem. B 15 (Suppl 1), S22–S31 (2021). https://doi.org/10.1134/S1990793121090116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090116

Keywords:

Navigation