Skip to main content
Log in

Destruction of the Shell of Influenza Viruses by Heteropoly Acids with Keggin Structure

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The results of an electron microscopic study of the effect of heteropoly acids (HPAs) with a Keggin structure on particles of influenza A/Aichi/1/68 (H3N2) and A/California/07/09 (H1N1) pdm09 viruses are presented. It is shown that the action of HPAs on viral particles leads to a complete (or partial) removal of transmembrane glycoproteins and the destruction of matrix protein M1, which manifests itself in the deformations and destruction of viral membranes. Using the A/California/07/09 (H1N1) pdm09 viruses as an example, it is shown that the efficiency of the destruction of the viral envelope by HPAs depends on the medium in which the viruses are cultured. The mechanism of destruction is proposed, which involves the extraction of cholesterol, etching of phospholipids, and the formation of pores in the lipid membrane as a result of the action of heteropolyanions. It is assumed that the penetration of protons through the formed pores can lead to the destruction of the matrix protein M1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).

    Book  Google Scholar 

  2. F. I. Dalidchik, E. M. Balashov, B. A. Budanov, A. K. Gatin, M. V. Grishin, A. A. Kirsankin, S. A. Kovalevskii, N. N. Kolchenko, V. G. Slutskii, and B. R. Shub, Russ. J. Phys. Chem. B 4, 896 (2010).

    Article  Google Scholar 

  3. J. T. Rhule, C. L. Hill, D. A. Judd, et al., Chem. Rev. 98, 327 (1998).

    Article  CAS  Google Scholar 

  4. A. Bijelic, M. Aureliano, and A. Rompel, Angew. Chem. Int. Ed. 58, 2980 (2019).

    Article  CAS  Google Scholar 

  5. S. Shigeta, Antivir. Chem. Chemother. 9 (2), 93 (1998).

    Article  CAS  Google Scholar 

  6. S. Ikeda, J. Neyts, N. Yamamoto, et al., Antivir. Chem. Chemother. 4, 253 (1993).

    Article  CAS  Google Scholar 

  7. S. Shigeta, S. Mori, J. Watanabe, et al., Antivir. Chem. Chemother. 6, 114 (1995).

    Article  CAS  Google Scholar 

  8. S. Shigeta, S. Mori, J. Watanabe, et al., Antivir. Chem. Chemother. 7, 346 (1996).

    Article  CAS  Google Scholar 

  9. S. Shigeta, S. Mori, T. Yamase, et al., Biomed. Pharmacother. 60, 211 (2006).

    Article  CAS  Google Scholar 

  10. R. F. Vasil’ev, V. D. Kincheva, V. V. Naumov, A. K. Slavova-Kazakova, A. V. Trofimov, G. F. Fedorova, and O. I. Yablonskaya, Russ. J. Phys. Chem. B 14, 479 (2020).

    Article  Google Scholar 

  11. Y. Qi, Y. Xiang, J. Wang, et al., Antivir. Res. 100, 392 (2013).

    Article  CAS  Google Scholar 

  12. O. A. Lopatina, E. A. Isaeva, I. A. Suetina, et al., Nanomater. Nanostrukt. 7 (1), 36 (2016).

    Google Scholar 

  13. O. A. Lopatina, I. A. Suetina, M. V. Mezentseva, L. I. Russu, S. A. Kovalevskiy, E. M. Balashov, S. A. Ulasevich, A. I. Kulak, D. A. Kulemin, N. M. Ivashkevich, and F. I. Dalidchik, Russ. J. Phys. Chem. B 14, 81 (2020).

    Article  CAS  Google Scholar 

  14. S. Shigeta, S. Mori, E. Kodama, et al., Antivir. Res. 58, 265 (2003).

    Article  CAS  Google Scholar 

  15. T. Yamase, J. Mater. Chem. 15, 4773 (2005).

    Article  CAS  Google Scholar 

  16. M. Kates, A. C. Allison, D. A. J. Tyrell, et al., Cold Spring Harb. Symp. Quant. Biol. 27, 293 (1962).

    Article  CAS  Google Scholar 

  17. M.-J. Gerl, J. L. Sampaio, S. Urban, et al., J. Cell Biol. 196, 213 (2012).

    Article  CAS  Google Scholar 

  18. B. Hu, C. T. Hofer, C. Thiele, et al., J. Virol. 93, e00555-19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. D. K. Verma, D. Gupta, and L. S. Kumar, Viruses 10, 650 (2018).

    Article  CAS  Google Scholar 

  20. S. Barman and D. P. Nayak, J. Virol. 81, 12169 (2007).

    Article  CAS  Google Scholar 

  21. T. Takahashi and T. Suzuki, Biochem. Res. Int. 2011, 245090 (2011).

    Article  Google Scholar 

  22. X. Sun and G. R. Whittaker, J. Virol. 77, 12543 (2003).

    Article  CAS  Google Scholar 

  23. S. Li, F. Eghiaian, C. Sieben, et al., Biophys. J. 100, 637 (2011).

    Article  CAS  Google Scholar 

  24. B. Sha and M. Luo, Nat. Struct. Biol. 4, 239 (1997).

    Article  CAS  Google Scholar 

  25. A. Harris, G. Cardone, D. C. Winkler, et al., Proc. Natl. Acad. Sci. U. S. A. 103, 19123 (2006).

    Article  CAS  Google Scholar 

  26. J. Fontana, G. Cardone, J. B. Heymann, et al., J. Virol. 86, 2919 (2012).

    Article  CAS  Google Scholar 

  27. J. Fontana and A. C. Steven, J. Virol. 87, 5621 (2013).

    Article  CAS  Google Scholar 

  28. Q. Chen, X. Huang, R. Wei, et al., Biochem. Biophys. Res. Commun. 516, 57 (2019).

    Article  CAS  Google Scholar 

  29. S. Barman and D. P. Nayak, J. Virol. 81, 12169 (2012).

    Article  Google Scholar 

  30. D. R. M. Graham, E. Chertova, J. M. Hilburn, et al., J. Virol. 77, 8237 (2003).

    Article  CAS  Google Scholar 

  31. S. A. Kovalevskiy, A. A. Gulin, O. A. Lopatina, A. A. Vasin, M. V. Mezentseva, E. M. Balashov, D. A. Kulemin, A. I. Kulak, and F. I. Dalidchik, Nanotechnol. Russ. 14, 481 (2019).

    Article  CAS  Google Scholar 

  32. D. Kobayashi, Y. Ouchi, M. Sadakane, et al., Chem. Lett. 46, 533 (2017).

    Article  CAS  Google Scholar 

  33. H. Nabika, Y. Inomata, E. Itoh, et al., RSC Adv. 3, 21271 (2013).

    Article  CAS  Google Scholar 

  34. H. Nabika, A. Sakamoto, R. Tero, et al., J. Phys. Chem. C 120, 15640 (2016).

    Article  CAS  Google Scholar 

  35. P. T. Ivanova, D. S. Myers, S. B. Milne, et al., ACS Infect. Dis. 11, 399 (2015).

    Google Scholar 

Download references

Funding

This study was carried out as part of a state assignment on topic no. 0082-2018-0003 (registration number AAAA-A18-118012390045-2) “Fundamentals of the creation of a new generation of nanostructured systems with unique operational electrical and magnetic properties” with financial support from the Russian Foundation for Basic Research (grant no. 18-54-00004 Bel_a) and the Belarusian Foundation for Basic Research (agreement no. Х18Р-110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Balashov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalevskiy, S.A., Lopatina, O.A., Gushchina, E.A. et al. Destruction of the Shell of Influenza Viruses by Heteropoly Acids with Keggin Structure. Russ. J. Phys. Chem. B 15, 1019–1025 (2021). https://doi.org/10.1134/S1990793121060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121060051

Keywords:

Navigation