Skip to main content
Log in

Application of a Static IR Fourier Spectrometer for Recording Chemical Compounds in an Open Atmosphere

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, AND SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The remote detection, identification, and determination of the presence of pollutants in an open atmosphere is one of the most important tasks of infrared (IR) spectroscopy. To solve this problem, it is proposed to use static IR-Fourier spectrometers, which, due to the absence of movable elements, are stable and small. The developed and created experimental layout of a static Fourier transform spectrometer (sFTS) for recording and analyzing gaseous compounds is described in this paper. To test the performance of the model, experiments are carried out to record and restore the IR absorption spectra of a test film simulator (lavsan) of the tested substances (methanol, ammonia) in the gas phase at a temperature contrast of 20°C and natural tests on an open route at a temperature contrast of 5 to 10°C. The results obtained confirm the possibility of using the developed sFTS layout for recording IR absorption spectra of chemical compounds in an open atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (Wiley, Chichester, 2005).

    Google Scholar 

  2. A. N. Zaidel’, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Technique and Practice of Spectroscopy (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  3. I. S. Golyak, A. N. Morozov, S. I. Svetlichnyi, A. S. Tabalina, and I. L. Fufurin, Russ. J. Phys. Chem. B 13, 557 (2019).

    Article  CAS  Google Scholar 

  4. G. V. Golubkov, G. Yu. Grigor’ev, Sh. Sh. Nabiev, L. A. Palkina, and M. G. Golubkov, Russ. J. Phys. Chem. B 12, 804 (2018).

    Article  CAS  Google Scholar 

  5. Sh. Sh. Nabiev, G. Yu. Grigor’ev, A. S. Lagutin, L. A. Palkina, A. A. Vasil’ev, L. N. Mukhamedieva, A. A. Pakhomova, G. V. Golubkov, S. V. Malashevich, V. M. Semenov, D. B. Stavrovskii, and S. V. Ivanov, Russ. J. Phys. Chem. B 13, 685 (2019).

    Article  CAS  Google Scholar 

  6. Il. S. Golyak, A. A. Esakov, N. S. Vasil’ev, and A. N. Morozov, Opt. Spectrosc. 115, 884 (2013).

  7. Sh. Sh. Nabiev and L. A. Palkina, Russ. J. Phys. Chem. B 11, 729 (2017).

    Article  CAS  Google Scholar 

  8. V. V. Nedel’ko, N. V. Chukanov, B. L. Korsunskii, T. S. Larikova, S. V. Chapyshev, and V. V. Zakharov, Russ. J. Phys. Chem. B 12, 997 (2018).

    Article  Google Scholar 

  9. A. N. Morozov and S. I. Svetlichnyi, Fundamentals of Fourier Spectroradiometry (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  10. P. R. Griffiths, J. A. de Haseth, and J. D. Winefordner, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, Hoboken, NJ, 2007).

    Book  Google Scholar 

  11. J. Kauppinen and J. Partanen, Fourier Transforms in Spectroscopy (Wiley Berlin, 2001).

    Book  Google Scholar 

  12. D. G. Winters, P. Schlup, and R. A. Bartels, Opt. Express 15, 1361 (2007).

    Article  Google Scholar 

  13. M. L. Junttila, J. Kauppinen, and E. Ikonen, J. Opt. Soc. Am. 8, 1457 (1991).

    Article  CAS  Google Scholar 

  14. M. W. Kudenov, M. N. Miskiewicz, M. J. Escuti, and E. L. Dereniak, Opt. Lett. 37, 4413 (2012).

    Article  Google Scholar 

  15. M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, Opt. Express 24, 7767 (2016).

    Article  CAS  Google Scholar 

  16. I. B. Vintaikin, N. S. Vasil’ev, Il. S. Golyak, Ig. S. Golyak, A. A. Esakov, A. N. Morozov, S. I. Svetlichnyi, S. E. Tabalin, and I. L. Fufurin, Izv. Akad. Nauk, Energet., No. 6, 144 (2016).

  17. N. S. Vasil’ev, Il. S. Golyak, Ig. S. Golyak, A. A. Esakov, A. N. Morozov, and S. E. Tabalin, Prib. Tekh. Eksp., No. 1, 181 (2015).

  18. R. D. Bell, Introductory Fourier Transform Spectroscopy (Academic, New-York, 1972).

  19. E. G. Steward, Fourier Optics: An Introduction (Dover, New York, 2011).

  20. A. A. Balashov, V. A. Vagin, Il. S. Golyak, A. N. Morozov, I. N. Nesteruk, and A. I. Khorokhorin, Fiz. Osn. Priborostr. 6 (3), 83 (2017).

    Google Scholar 

  21. T. P. Sheahen, Appl. Opt. 13, 2907 (1974).

    Article  CAS  Google Scholar 

  22. N. S. Vasil’ev, I. B. Vintaikin, Il. S. Golyak, Ig. S. Golyak, I. V. Kochikov, and I. L. Fufurin, Komp’yut. Opt. 41 (5), 626 (2017).

    Article  Google Scholar 

  23. K. V. Glagolev, Ig. S. Golyak, Il. S. Golyak, A. A. Esakov, V. N. Kornienko, I. V. Kochikov, A. N. Morozov, S. I. Svetlichnyi, and S. E. Tabalin, Opt. Spectrosc. 110, 449 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 19-29-06009 MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Golyak.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vintaykin, I.B., Golyak, I.S., Korolev, P.A. et al. Application of a Static IR Fourier Spectrometer for Recording Chemical Compounds in an Open Atmosphere. Russ. J. Phys. Chem. B 15, 413–419 (2021). https://doi.org/10.1134/S1990793121030131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121030131

Keywords:

Navigation