Skip to main content
Log in

Immiscibility of Liquid Phases and Critical Phenomena in the Na2SO4–Na2B4O7–H2O System at 350–460°C and a Pressure of up to 100 MPa

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The phase equilibria and critical phenomena in the Na2SO4–Na2B4O7–H2O system with the boundary subsystems Na2B4O7–H2O (type 1 with the phase separation of the solutions) and Na2SO4–H2O (type 2) at 350–460°C and a pressure of up to 100 MPa are studied. It is shown that there exist two three-phase regions L1–L2–S, which are adjacent to two water–salt subsystems and divided by a fluid region, at temperatures ranging from 440°C (the critical point Q (L1 = L2–S) of the type 2 binary system) to ~455°C (at which these regions unite). The ternary system has two critical curves in saturated solutions. The curves originate from different critical points of the type 2 binary subsystem, point p (G = L–S) and point Q (G = L1–L2–S), respectively, and end at the end ternary critical points pR (G = L1–L2–S) and QN (G–L1 = L2–S), respectively. Between the last two points, there is a four-phase equilibrium (G–L1–L2–S), which, according to the visual observations in the sealed quartz ampules, exists in the temperature range 350–380°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Hereinafter, the notation wt % Na2B4O7 means the weight percentage of Na2B4O7 in the sum (Na2B4O7 + Н2O).

REFERENCES

  1. I. D. van der Waals and F. Constamm, Course of Thermostatics (Johann Ambrosius Barth, Leipzig, 1927; ONTI, Moscow, 1936).

  2. M. I. Ravich, Water-Salt Systems at Elevated Temperatures and Pressures (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  3. V. M. Valyashko, Phase Equilibria and Properties of Hydrothermal Systems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  4. M. A. Urusova, V. M. Valyashko, and I. M. Grigor’ev, Russ. J. Inorg. Chem. 52, 405 (2007).

    Article  Google Scholar 

  5. M. A. Urusova, S. V. Makaev, E. V. Maleeva, N. S. Ivanova, and V. M. Valyashko, Russ. J. Phys. Chem. B 5, 1173 (2011).

    Article  CAS  Google Scholar 

  6. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 62, 843 (2017).

    Article  CAS  Google Scholar 

  7. M. A. Urusova and V. M. Valyashko, Russ. J. Phys. Chem. B 11, 1322 (2017).

    Article  CAS  Google Scholar 

  8. M. I. Ravich and L. F. Yastrebova, Zh. Neorg. Khim. 6, 431 (1961).

    CAS  Google Scholar 

  9. L. F. Yastrebova, A. F. Borina, and M. I. Ravich, Zh. Neorg. Khim. 8, 208 (1963).

    CAS  Google Scholar 

  10. I. N. Anikin and A. D. Shushkanov, Sov. Phys. Crystallogr. 8, 98 (1963).

    Google Scholar 

  11. S. D. Malinin and N. A. Kurovskaya, Geochem. Int. 34, 1065 (1996).

    Google Scholar 

  12. N. Yu. Ikornikova, Hydrothermal Synthesis of Crystals in Chloride Media (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  13. C. W. Blount and F. W. Dickson, Geochim. Cosmochim. Acta 33, 227 (1969).

    Article  CAS  Google Scholar 

  14. B. Strubel, Neues Jahrbuch. Min. Mh. 7–8, 223 (1967).

    Google Scholar 

  15. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 60, 230 (2015).

    Article  CAS  Google Scholar 

  16. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 60, 1275 (2015).

    Article  CAS  Google Scholar 

  17. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 50, 1754 (2005).

    Google Scholar 

  18. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 54, 759 (2009).

    Article  Google Scholar 

  19. W. L. Marshall, J. Chem. Eng. Data 27, 175 (1982).

    Article  CAS  Google Scholar 

  20. M. A. Urusova and V. M. Valyashko, Zh. Neorg. Khim. 28, 1834 (1983).

    CAS  Google Scholar 

  21. M. A. Urusova and V. M. Valyashko, Zh. Neorg. Khim. 35, 1273 (1990).

    CAS  Google Scholar 

  22. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 56, 430 (2011).

    Article  CAS  Google Scholar 

  23. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 53, 604 (2008).

    Article  Google Scholar 

  24. M. I. Ravich and F. E. Borovaya, Zh. Neorg. Khim. 9, 952 (1964).

    CAS  Google Scholar 

Download references

Funding

This study was performed under state assignment no. 46.4 “Theoretical Foundations of Chemical Engineering and Development of Efficient Chemical Engineering Processes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Valyashko.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urusova, M.A., Valyashko, V.M. Immiscibility of Liquid Phases and Critical Phenomena in the Na2SO4–Na2B4O7–H2O System at 350–460°C and a Pressure of up to 100 MPa. Russ. J. Phys. Chem. B 14, 1260–1267 (2020). https://doi.org/10.1134/S1990793120080072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120080072

Navigation