Skip to main content
Log in

Formation of Effective Electrocatalysts of Hydrogen Evolution MoSx > 2 by Pulsed Laser Ablation Assisted by the Deposition of Mo Nanoparticles

  • CHEMICAL PHYSICS OF NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The mechanisms of film formation during pulsed laser ablation of a MoS2 target were studied. The conditions for the deposition of laser erosion plume were determined. This made it possible to obtain coatings with a porous structure consisting of round Mo nanoparticles coated with a thin shell of amorphous molybdenum sulfide MoSx > 2. Due to its hybrid structure, the MoSx > 2/Mo nanomaterial can be effectively used for electro- and photocatalysis of water splitting. The MoSx > 2/Mo films deposited on a glassy carbon substrate are characterized by good current transport and high active surface area. When the film thickness increased due to the increased deposition time, the overvoltage of hydrogen evolution in an acid solution monotonically decreased to 142.5 mV, which was necessary in order to obtain current density of hydrogen evolution of 10 mA/cm2. The catalyst loading was 230 μg/cm2. Further increase in the loading did not significantly reduce the overvoltage. The results indicate that it is promising to use Mo nanoparticles as an ultrafine support for the catalytic nanolayers of amorphous molybdenum sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. C. K. Vesborg, B. Seger, and I. Chorkendorff, J. Phys. Chem. Lett. 6, 951 (2015). https://doi.org/10.1021/acs.jpclett.5b00306

    Article  CAS  PubMed  Google Scholar 

  2. A. Gupta, K. Ankireddy, B. Kumar, et al., Nanotecnology 30, 175401 (2019). https://doi.org/10.1088/1361-6528/aaffac

    Article  CAS  Google Scholar 

  3. R. I. Romanov, V. Yu. Fominskii, A. V. Shelyakov, and G. V. Golubkov, Russ. J. Phys. Chem. B 10, 238 (2016). https://doi.org/10.7868/S0207401X16040105

    Article  CAS  Google Scholar 

  4. B. Hinnemann, P. G. Moses, J. Bonde, et al., J. Am. Chem. Soc. 127, 5308 (2005). https://doi.org/10.1021/ja0504690

    Article  CAS  PubMed  Google Scholar 

  5. T. F. Jaramillo, K. P. Jorgensen, J. Bonde, et al., Science (Washington, DC, U. S.) 317, 100 (2007). https://doi.org/10.1126/science.1141483

    Article  CAS  Google Scholar 

  6. V. A. Kharitonov, M. V. Grishin, S. A. Ulasevich, S. Yu. Sarvadii, and B. R. Shub, Russ. J. Phys. Chem. B 13, 16 (2019). https://doi.org/10.1134/S0207401X19010084

    Article  CAS  Google Scholar 

  7. M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, N. N. Kolchenko, S. Yu. Sarvadii, and B. R. Shub, Russ. J. Phys. Chem. B 13, 9 (2019). https://doi.org/10.1134/S0207401X18120063

    Article  CAS  Google Scholar 

  8. V. Yu. Fominski, A. M. Markeev, V. N. Nevolin, et al., Thin Solid Films 248, 240 (1994). https://doi.org/10.1016/0040-6090(94)90018-3

    Article  CAS  Google Scholar 

  9. O. Mabayoje, B. R. Wygant, M. Wang, et al., ACS Appl. Energy Mater. 1, 4453 (2018). https://doi.org/10.1021/acsaem.8b00973

    Article  CAS  Google Scholar 

  10. B. Liu, Z. Jin, L. Bai, et al., J. Mater. Chem. A 4, 14204 (2016). https://doi.org/10.1039/C6TA04789K

    Article  CAS  Google Scholar 

  11. S. D. Walck, J. S. Zabinski, M. S. Donley, and J. E. Bultman, Surf. Coat. Technol 62, 412 (1993). https://doi.org/10.1016/0257-8972(93)90276-T

    Article  CAS  Google Scholar 

  12. V. Yu. Fominski, R. I. Romanov, D. V. Fominski, and A. V. Shelyakov, Nucl. Instrum. Methods Phys. Res., Sect. B 416, 30 (2018). https://doi.org/10.1016/j.nimb.2017.12.002

    Article  CAS  Google Scholar 

  13. V. Yu. Fominski, R. I. Romanov, D. V. Fominski, and A. V. Shelyakov, Thin Solid Films 642, 58 (2017). https://doi.org/10.1016/j.tsf.2017.09.020

    Article  CAS  Google Scholar 

  14. R. Wang, P. Sun, H. Wang, and X. Wang, Electrochim. Acta 258, 876 (2017). https://doi.org/10.1016/j.electacta.2017.11.138

    Article  CAS  Google Scholar 

  15. V. Yu. Fominski, R. I. Romanov, D. V. Fominski, et al., Opt. Laser Technol. 102, 74 (2018). https://doi.org/10.1016/j.optlastec.2017.12.028

    Article  CAS  Google Scholar 

  16. M. Schenato, C. L. A. Ricardo, P. Scardi, et al., Appl. Catal., A 510, 156 (2016). https://doi.org/10.1016/j.apcata.2015.11.009

  17. A. Bailini, F. di Fonzo, M. Fusi, et al., Appl. Surf. Sci. 253, 8130 (2007). https://doi.org/10.1016/j.apsusc.2007.02.145

    Article  CAS  Google Scholar 

  18. R. F. Wood, J. N. Leboeuf, K. R. Chen, et al., Appl. Surf. Sci. 127–129, 151 (1998). https://doi.org/10.1016/S0169-4332(97)00625-9

    Article  Google Scholar 

  19. L. R. L. Ting, Y. Deng, L. Ma, et al., ACS Catal. 6, 861 (2016). https://doi.org/10.1021/acscatal.5b02369

    Article  CAS  Google Scholar 

  20. H. Deng, C. Zhang, Y. Xie, et al., J. Mater. Chem. A 4, 6824 (2016). https://doi.org/10.1039/c5ta09322h

    Article  CAS  Google Scholar 

  21. D. Escalera-López, Z. Lou, and N. V. Rees, Adv. Energy Mater. 9, 1802614 (2019). https://doi.org/10.1002/aenm.201802614

    Article  CAS  Google Scholar 

  22. N. T. McDevitt, J. E. Bultman, and J. S. Zabinski, Appl. Spectrosc. 52, 1160 (1998). https://doi.org/10.1366/0003702981945165

    Article  CAS  Google Scholar 

  23. C. H. Chang and S. S. Chan, J. Catal. 72, 139 (1981). https://doi.org/10.1016/0021-9517(81)90085-3

    Article  CAS  Google Scholar 

  24. T.-W. Lin, C.-J. Liu, and J.-Y. Lin, Appl. Catal. B 134–135, 75 (2013). https://doi.org/10.1016/j.apcatb.2013.01.004

    Article  CAS  Google Scholar 

  25. K. E. Lee, S. P. Sasikala, H. J. Lee, et al., Part. Part. Syst. Charact. 34, 1600375 (2017). https://doi.org/10.1002/ppsc.201600375

    Article  CAS  Google Scholar 

  26. B.-W. Ahn, T.-Y. Kim, S.-H. Kim, et al., Appl. Surf. Sci. 432, 183 (2018). https://doi.org/10.1016/j.apsusc.2017.06.262

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (for National Research Nuclear University MEPhI) (grant no. 19-19-00081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Fominski.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fominski, D.V., Nevolin, V.N., Fominski, V.Y. et al. Formation of Effective Electrocatalysts of Hydrogen Evolution MoSx > 2 by Pulsed Laser Ablation Assisted by the Deposition of Mo Nanoparticles. Russ. J. Phys. Chem. B 14, 714–721 (2020). https://doi.org/10.1134/S1990793120040041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120040041

Keywords:

Navigation