Skip to main content
Log in

Synthesis, Experimental and Theoretical Characterization of 4-(((4-Ethyl-5-(Thiophene-2-yl)-4H-1,2,4-Triazol-3-yl)Thio)Methyl)-6-Methoxycoumarin

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this article 4-(((4-ethyl-5-(thiophene-2-yl)-4H-1,2,4-triazol-3-yl)thio)methyl)-6-methoxycoumarin compound (ETMM) has been synthesized and characterized both experimentally and theoretically. The synthesized compound was characterized experimentally by Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and Ultraviolet (UV) spectroscopic techniques. It was used Gaussian 09 software for theoretical calculations. Based on the theoretical data obtained was calculated the global reactivity descriptor of ETMM. Density Functional Theory (DFT) calculations of molecular electrostatic potentials and frontier molecular orbitals of ETMM were implemented at the B3LYP/6-311G(d,p) level of theory. It was observed that there was an excellent agreement between experimental NMR and calculated NMR data. R2 for 1HNMR and 13CNMR were computed as 0.992 and 0.993, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. E. Tanış, N. Cankaya, and S. Yalçın, J. Phys. Chem. B 13, 49 (2019).

    Google Scholar 

  2. M. J. Frisch et al., Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  3. T. K. R. Dennington and J. Millam, GaussView, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009).

    Google Scholar 

  4. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  5. C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. 37, 785 (1988).

    Article  CAS  Google Scholar 

  6. K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).

    Article  CAS  Google Scholar 

  7. N. Sundaraganesan, S. Ilakiamani, H. Saleem, P. M. Wojciechowski, and D. Michalska, Spectrochim. Acta, Part A 61, 2995 (2005).

    Article  CAS  Google Scholar 

  8. H. M. Jamroz, Vibrational Energy Distribution Analysis VEDA 4 (Warsaw, 2004).

  9. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  10. M. Koparir, C. Orek, P. Koparir, and K. Sarac, Spectrochim. Acta, Part A 105, 522 (2013).

    Article  CAS  Google Scholar 

  11. E. Inkaya, M. Dinçer, A. Çukurovalı, and E. Yılmaz, Acta Crystallogr., Sect. E 67, 310 (2011).

    Article  Google Scholar 

  12. M. Dincer, N. Ozdemir, I. Yılmaz, A. Cukurovali, and O. Buyukgungor, Acta Crystallogr. 60, 674 (2004).

    Article  Google Scholar 

  13. E. Inkaya, M. Dincer, O. Ekici, and A. Cukurovali, Spectrochim. Acta, Part A 101, 218 (2013).

    Article  CAS  Google Scholar 

  14. C. J. Jameson and A. C. de Dios, J. Chem. Phys. 97, 417 (1992).

    Article  CAS  Google Scholar 

  15. C. Orek, P. Koparir, and M. Koparir, Spectrochim. Acta, Part A 97, 923 (2012).

    Article  CAS  Google Scholar 

  16. C. N. Rao, R. Venkataraghavaxa, and T. R. Kasturı, Contrib. Infrared Spectra Organosulphur 6, 36 (1963).

    Google Scholar 

  17. D. Sajan, Y. Erdogdu, R. Reshmy, O. Dereli, K. Kurien Thomas, and I. Hubert Joe, Spectrochim. Acta, Part A 82, 118 (2011).

    Article  CAS  Google Scholar 

  18. Y. Erdogdu, Spectrochim. Acta, Part A 106, 25 (2013).

    Article  CAS  Google Scholar 

  19. R. M. B. Silverstein, G. Clayton, Morrill, and C. Terence, Spectrometric Identification of Organic Compounds (Wiley, New York, 1981).

    Google Scholar 

  20. V. Arjunan, S. Sakiladevi, M. K. Marchewka, and S. Mohan, Spectrochim. Acta, Part A 109, 79 (2013).

    Article  CAS  Google Scholar 

  21. L. Joseph, D. Sajan, R. Reshmy, B. S. Arunsasi, Y. Erdogdu, and K. K. Thomas, Spectrochim. Acta, Part A 99, 234 (2012).

    Article  CAS  Google Scholar 

  22. P. K. Chattaraj and S. Giri, J. Phys. Chem. 111, 11116 (2007).

    Article  CAS  Google Scholar 

  23. P. Geerlings, F. de Proft, and W. Langenaeker, Chem. Rev. 103, 1793 (2003).

    Article  CAS  Google Scholar 

  24. R. G. Parr, J. Am. Chem. Soc. 105, 7512 (1983).

    Article  CAS  Google Scholar 

  25. R. G. Parr, L. von Szentpaly, and S. B. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  26. R. G. Pearson, J. Org. Chem. 54, 1423 (1989).

    Article  CAS  Google Scholar 

  27. M. L. Connolly, Science (Washington, DC, U. S.) 221, 709 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamuran Sarac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamuran Sarac Synthesis, Experimental and Theoretical Characterization of 4-(((4-Ethyl-5-(Thiophene-2-yl)-4H-1,2,4-Triazol-3-yl)Thio)Methyl)-6-Methoxycoumarin. Russ. J. Phys. Chem. B 14, 19–28 (2020). https://doi.org/10.1134/S1990793120010273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120010273

Keywords:

Navigation