Skip to main content
Log in

Effect of Heavy Metal Salts on Propylene Oxidation by Methanotrophic Bacteria

  • CHEMICAL PHYSICS OF ECOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of heavy metal (HM) (Cu(II), Fe(III), Ni(II), Zn(II)) salts on propylene oxidation by the methane-oxidizing bacteria Methylococcus capsulatus (M) as a process simulating methane oxidation by methanotrophic bacteria is investigated. The reaction begins with the activation of molecular oxygen with subsequent polypropylene oxidation. Kinetic of propylene oxide accumulation affected by HM correlates with oxygen consumption and remained stable. It is found that inhibition effects of heavy metals on propylene adsorption by M. capsulatus (M) membranes differed. EPR-spectra of M. capsulatus (M) membranes indicate the presence of a copper (II) signal with g-factor of 2.05 both before and after exposure to HM. The studied metals may be arranged in the rank order of toxicity for methanotrophic bacteria as follows: Zn > Ni > Fe > Cu. It is shown for the first time that zinc enhances inhibitory effect of other metals. It is revealed that HM at concentrations exceeding TLV at least three times insignificantly delays propylene oxidation, which indicates that this species of bacteria may be promising for the development of biofilters for removal of hydrocarbons (methane, propylene) under conditions of industrial systems and heavy metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. R. Feldman, W. D. Collins, S. C. Biraud, et al., Nat. Geosci. 11, 238 (2018). https://doi.org/10.1038/s41561-018-0085-9

    Article  CAS  Google Scholar 

  2. J. S. Singh, V. C. Pandey, D. P. Singh, and R. P. Singh, Agric. Ecosyst. Environ. 139, 74 (2010). https://doi.org/10.1016/j.agee.2010.07.003

    Article  Google Scholar 

  3. E. N. Kaparullina, N. V. Doronina, I. I. Mustakhimov, N. V. Agafonova, and Yu. A. Trotsenko, Microbiology. 86, 113 (2017). https://doi.org/10.7868/S0026365617010086

    Article  CAS  Google Scholar 

  4. Yu. A. Trotsenko and V. N. Khmelenina, Extremophilic Methanotrophs (ONTI PNTs RAN, Pushchino, 2008) [in Russian].

  5. V. N. Pishchik, N. I. Vorob’ev, N. A. Provorov, and Yu. V. Khomyakov, Microbiology. 85, 257 (2016). https://doi.org/10.7868/S0026365616030113

    Article  CAS  Google Scholar 

  6. L. N. Ul’yanenko, E. V. Reva, and B. I. Synzynys, S-kh. Biol. 52, 183 (2017). https://doi.org/10.15389/agrobiology.2017.1.183rus

    Article  Google Scholar 

  7. R. I. Gvozdev, I. A. Tukhvatullin, and L. B. Tumanova, Izv. Akad. Nauk, Ser. Biol. 2, 186 (2008).

  8. D. W. Choi, W. A. Antholine, Y. S. Do, et al., Microbiology. 151, 3417 (2005). https://doi.org/10.1099/mic.0.28169-0

    Article  CAS  PubMed  Google Scholar 

  9. S. Sirajuddin, D. Barupala, S. Helling, et al., J. Biol. Chem. 289, 21782 (2014). https://doi.org/10.1074/jbc.M114.581363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C.-Li. Chen, K. H.-C. Chen, S.-C. Ke, et al., J. Inorg. Biochem. 98, 2125 (2004). https://doi.org/10.1016/j.jinorgbio.2004.09.021

    Article  CAS  PubMed  Google Scholar 

  11. E. A. Saratovskikh, L. A. Korshunova, O. S. Roshchupkina, and Yu. I. Skurlatov, Khim. Fiz. 26 (8), 46 (2007).

    CAS  Google Scholar 

  12. G. I. Karavaiko, G. A. Dubinina, and T. F. Kondrat’eva, Microbiology. 75, 512 (2006).

    Article  CAS  Google Scholar 

  13. I. J. Higgins, D. J. Best, and R. C. Hammond, Nature (London, U.K.). 286, 561 (1980). https://doi.org/10.1038/286561a0

    Article  CAS  Google Scholar 

  14. V. C. Pandey, J. S. Singh, D. P. Singh, and R. P. Singh, Int. J. Environ. Sci. Technol. 11, 241 (2014). https://doi.org/10.1007/s13762-013-0387-9

    Article  CAS  Google Scholar 

  15. M. B. Jenkins, J. H. Chen, D. J. Kadner, and L. W. Lion, Appl. Environ. Microbiol. 60, 3491 (1994).

    Article  CAS  Google Scholar 

  16. M. R. Bruins, S. Kapil, and F. W. Oehme, Ecotoxicol. Environ. Safety. 45, 198 (2000). https://doi.org/10.1006/eesa.1999.1860

    Article  CAS  PubMed  Google Scholar 

  17. D. W. Choi, Y. S. Do, C. J. Zea, et al., J. Inorg. Biochem. 100, 2150 (2006). https://doi.org/10.1016/j.jinorgbio.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  18. Yu. A. Trotsenko, K. A. Medvedkova, V. N. Khmelenina, and B. Ts. Eshinimaev, Microbiology. 78, 387 (2009).

    Article  CAS  Google Scholar 

  19. X. Lu, W. Gu, L. Zhao, et al., Sci. Adv. 3, e1700041 (2017). https://doi.org/10.1126/sciadv.1700041

    Article  PubMed  PubMed Central  Google Scholar 

  20. N. Vita, S. Platsaki, A. Basle, et al., Nature (London, U.K.) 525, 140 (2015). https://doi.org/10.1038/nature14854

    Article  CAS  Google Scholar 

  21. G. E. Kenney, L. M. K. Dassama, M.-E. Pandelia, et al., Science (Washington, DC, U. S.) 359 (2018).

  22. H. Aimen, A. S. Khan, and N. Kanwal, J. Bioremediat. Biodegrad. 9, 432 (2018). https://doi.org/10.4172/2155-6199.1000432

    Article  CAS  Google Scholar 

  23. S. Yoon, Ph.D. Dissertation (Univ. Michigan, USA, 2010).

  24. J. D. Semrau, A. A. DiSpirito, W. Gu, and S. Yoon, Appl. Environ. Microbiol. 84, e02289-17 (2018). https://doi.org/10.1128/AEM.02289-17

    Article  PubMed  PubMed Central  Google Scholar 

  25. D. W. Choi, N. L. Bandow, M. T. McEllistrem, et al., J. Inorg. Biochem. 104, 1240 (2010). https://doi.org/10.1016/j.jinorgbio.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  26. A. A. L. Hasin, S. J. Gurman, L. M. Murphy, et al., Environ. Sci. Technol. 44, 400 (2010). https://doi.org/10.1021/es901723c

    Article  CAS  PubMed  Google Scholar 

  27. L. Avdeeva and R. Gvozdev, Chem. J. Mold. 12, 110 (2017). https://doi.org/10.19261/cjm.2017.404

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed as a government task, project no. 0089-2014-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Avdeeva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

Additional information

Translated by A.G. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeeva, L.V., Gvozdev, R.I. Effect of Heavy Metal Salts on Propylene Oxidation by Methanotrophic Bacteria. Russ. J. Phys. Chem. B 13, 1020–1025 (2019). https://doi.org/10.1134/S1990793119060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119060022

Keywords:

Navigation