Skip to main content
Log in

Structure and Sensing Properties of Nanostructured SnO2–In2O3 Composites Synthesized by the Impregnation Method

  • ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The structure and sensing properties of SnO2–In2O3 composites synthesized by the impregnation method are studied. These composites consist of In2O3 nanocrystals comprising SnO2 nanoclusters with a size of 5–7 nm on their surface. Using energy-dispersive X-ray spectroscopy, it is found that the SnO2 nanoclusters contain indium ions, which provide an increase in the number of catalytically active oxygen vacancies in them. The maximum efficiency of the synthesized composites for hydrogen detection in air is achieved at a SnO2 content in the composite of about 40 wt %. In this case, the high sensor sensitivity of the composite is attributed to the catalytic activity of SnO2 clusters containing indium ions and the high specific surface area of SnO2 aggregates, which provide the conductivity of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  CAS  Google Scholar 

  2. N. Yamazoe and K. Shimanoe, Sens. Actuators, B 128, 566 (2008).

    Article  CAS  Google Scholar 

  3. G. N. Gerasimov, V. F. Gromov, O. J. Ilegbusi, and L. I. Trakhtenberg, Sens. Actuators, B 240, 613 (2017).

    Article  CAS  Google Scholar 

  4. V. Brinzari, I. Damaskin, L. Trakhtenberg, et al., Thin Solid Films 552, 225 (2014).

    Article  CAS  Google Scholar 

  5. L. I. Trakhtenberg, G. N. Gerasimov, L. N. Aleksandrova, and V. K. Potapov, Radiat. Phys. Chem. 65, 479 (2002).

    Article  CAS  Google Scholar 

  6. W. J. Moon, J. H. Yu, and C. G. Man, Sens. Actuators, B 87, 464 (2002).

    Article  CAS  Google Scholar 

  7. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators, B 169, 32 (2012).

    Article  CAS  Google Scholar 

  8. K.-W. Kim, P.-S. Cho, S.-J. Kim, et al., Sens. Actuators, B 123, 318 (2007).

    Article  CAS  Google Scholar 

  9. M. A. Kozhushner, L. I. Trakhtenberg, V. L. Bodneva, et al., J. Phys. Chem. C 118, 11440 (2014).

    Article  CAS  Google Scholar 

  10. G. Korotcenkov, S.-D. Han, B. K. Cho, and V. Brinzari, Crit. Rev. Solid State Mater. Sci. 34, 1 (2009).

    Article  CAS  Google Scholar 

  11. K. I. Gnanasekar, X. Jiang, J. C. Jiang, et al., J. Nanosci. Nanotechnol. 2, 189 (2002).

    Article  CAS  Google Scholar 

  12. M. M. Natile and A. Glisenti, J. Phys. Chem. B 110, 2515 (2006).

    Article  CAS  Google Scholar 

  13. G. N. Gerasimov, M. I. Ikim, P. S. Timashev, V. F. Gromov, T. V. Belysheva, E. Yu. Spiridonova, V. N. Bagratashvili, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A 89, 1059 (2015).

    Article  CAS  Google Scholar 

  14. V. F. Gromov, G. N. Gerasimov, T. V. Belysheva, M. I. Ikim, E. Yu. Spiridonova, M. M. Grekhov, R. A. Ali-zade, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 12, 129 (2018).

    Article  CAS  Google Scholar 

  15. G. N. Gerasimov, M. M. Grekhov, V. F. Gromov, M. I. Ikim, E. Yu. Spiridonova, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 12, 709 (2018).

    Article  CAS  Google Scholar 

  16. H. Kim, C. M. Gilmore, A. Piqué, et al., J. Appl. Phys. 86, 6451 (1999).

    Article  CAS  Google Scholar 

  17. S. J. Wen, G. Coutirier, J. P. Chaminade, et al., J. Solid State Chem. 101, 203 (1992).

    Article  CAS  Google Scholar 

  18. H. Enoki, J. Echigoya, and H. Suto, J. Mater. Sci. 26, 4110 (1991).

    Article  CAS  Google Scholar 

  19. N. Savage, B. Chwieroth, A. Ginwalla, et al., Sens. Actuators, B 79, 17 (2001).

    Article  CAS  Google Scholar 

  20. G. Korotcenkov, V. Brinzari, J. Schwank, et al., Sens. Actuators, B 77, 244 (2001).

    Article  CAS  Google Scholar 

  21. M. A. Kozhushner, L. I. Trakhtenberg, A. C. Landerville, et al., J. Phys. Chem. C 117, 11562 (2013).

    Article  CAS  Google Scholar 

  22. G. J. Li, X. H. Zhang, and S. Kawi, Sens. Actuators, B 60, 64 (1999).

    Article  CAS  Google Scholar 

  23. J. Maier and W. Gopel, J. Solid State Chem. 72, 293 (1988).

    Article  CAS  Google Scholar 

  24. W. Gopel, G. Rocker, and R. Feierabend, Phys. Rev. B 28, 3427 (1983).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under a state task to Semenov Institute of Chemical Physics of the Russian Academy of Sciences (project 45.22 no. 0082-2018-0003 “Fundamentals of Designing New-Generation Nanostructured Systems with Unique Performance Characteristics” (AAAA-A18-118012390045-2)) and supported by the Russian Foundation for Basic Research (project nos. 17-07-00131a, 18-07-00551a, 19-07-00141a, and 19-07-00251a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Ikim.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, G.N., Gromov, V.F., Ikim, M.I. et al. Structure and Sensing Properties of Nanostructured SnO2–In2O3 Composites Synthesized by the Impregnation Method. Russ. J. Phys. Chem. B 13, 763–768 (2019). https://doi.org/10.1134/S1990793119050154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119050154

Keywords:

Navigation