Skip to main content
Log in

Combustion Features of Nanothermites in Pyrotechnic Heaters

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Several thermite systems (Al/Fe2O3 and Mg/Fe2O3) with promising applications in sealed pyrotechnic heat sources under space conditions have been reported earlier. Experiments have found excellent propagation of the combustion reaction of these thermites inside sealed steel tubes. Outer tube surfaces have been heated up to 700–1000°C. This article focuses on nanothermites, i.e., the mixtures having the same composition but containing nano-sized components. Simultaneous thermal analysis is employed to study the reactivity of these thermite systems and the reaction products. The effect of nanothermites and the method used for mixing the components on the burning velocity, temperature on the tube surface, and the critical combustion diameter are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. L. Wang, Z. A. Munir, and Y. M. Maximov, J. Mater. Sci. 28, 3693 (1993). https://doi.org/10.1007/BF00353167

    Article  CAS  Google Scholar 

  2. A. G. Merzhanov, Combustion Processes and Materials Synthesis (ISMAN, Chernogolovka, 1998) [in Russian].

    Google Scholar 

  3. S. Goroshin, A. J. Higgins, L. Jiang, et al., Micrograv. Sci. Technol. 16, 322 (2005). doihttps://doi.org/10.1007/BF02945999

    Article  CAS  Google Scholar 

  4. D. Ivanov, Y. Frolov, A. Pivkina, et al., Theory and Practice of Energetic Materials (Science Press, Bejing, 2007), Vol. 8, p. 301.

    Google Scholar 

  5. A. G. Merzhanov, Combustion and Plasma Synthesis of High-Temperature Materials (VCH, New York, 1990).

    Google Scholar 

  6. K. Monogarov, A. Pivkina, N. Muravyev, et al., Phys. Proc. 72, 362 (2015). https://doi.org/10.1016/j.phpro.2015.09.111

    Article  CAS  Google Scholar 

  7. K. Monogarov, N. Muravyev, D. Meerov, et al., MATEC Web Conf. 243, 00004 (2018). https://doi.org/10.1051/matecconf/201824300004

    Article  Google Scholar 

  8. J.-E. Berthe, M. Comet, F. Schnell, et al., Propellants, Explos., Pyrotech. 41, 994 (2016). https://doi.org/10.1002/prep.201600029

    Article  CAS  Google Scholar 

  9. A. W. Miziolek, AMPTIAC Newsl 6, 43 (2013). https://doi.org/10.1016/j.combustflame.2012.09.009

    Article  CAS  Google Scholar 

  10. J. A. Puszynski, C. J. Bulian, and J. J. Swiatkiewicz, J. Propuls. Power 23, 698 (2007). https://doi.org/10.2514/1.24915

    Article  CAS  Google Scholar 

  11. M. L. Pantoya, V. I. Levitas, J. J. Granier, et al., J. Propuls. Power 25, 465 (2009). https://doi.org/10.2514/1.36436

    Article  CAS  Google Scholar 

  12. M. Pantoya and J. Granier, Propellants, Explos., Pyrotech. 30, 53 (2005). https://doi.org/10.1002/prep.200400085

    Article  CAS  Google Scholar 

  13. B. S. Bockmon, M. L. Pantoya, S. F. Son, et al., J. Appl. Phys. 98, 064903 (2005). https://doi.org/10.1063/1.2058175

    Article  CAS  Google Scholar 

  14. V. E. Sanders, B. W. Asay, T. J. Foley, et al., J. Propuls. Power 23, 707 (2007). https://doi.org/10.2514/1.26089

    Article  CAS  Google Scholar 

  15. N. Muravyev, Y. Frolov, A. Pivkina, et al., Propellants, Explos., Pyrotech. 35, 226 (2010). https://doi.org/10.1002/prep.201000028

    Article  CAS  Google Scholar 

  16. J. A. Puszynski, M. M. Bichay, and J. J. Swiatkiewicz, US Patent No. US7670446B2 (2010).

  17. E. Lafontaine and M. Comet, Nanothermites (Wiley, Hoboken, NJ, 2016). https://doi.org/10.1002/9781119329947

    Book  Google Scholar 

  18. J. J. Granier, A. Rai, K. Park, et al., in Proceedings of the AIChE Annual Meeting, 2005, p. 511.

  19. S.-X. Wang, K.-M. Liang, X.-H. Zhang, et al., J. Mater. Sci. Lett. 22, 855 (2003). https://doi.org/10.1023/A:1024438030689

    Article  CAS  Google Scholar 

  20. S. H. Fischer and M. C. Grubelich, in Proceedings of the 24th International Pyrotech. Seminar, California, USA, 1998, p. 231.

  21. V. I. Levitas, M. L. Pantoya, and S. Dean, Combust. Flame 161, 1668 (2014). https://doi.org/10.1016/j.combustflame.2013.11.021

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a subsidy granted for executing state tasks on the topics 0082-2018-0002 and AAAA-A18-118031490034-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Monogarov.

Additional information

In memory of A.A. Borisov

Translated by D. Terpilovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monogarov, K.A., Meerov, D.B., Frolov, Y.V. et al. Combustion Features of Nanothermites in Pyrotechnic Heaters. Russ. J. Phys. Chem. B 13, 610–614 (2019). https://doi.org/10.1134/S1990793119040250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119040250

Keywords:

Navigation