Skip to main content
Log in

Electrophysical Features of Structural Transformations of an Aqueous Colloidal Nanodiamond Solution

  • Chemical Physics of Biological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

An abrupt change in the electrophysical properties of aqueous colloidal nanodiamond solutions, which is associated with a change in the spatial structure of nanodiamond-based aqueous nanoassociates, is shown. The freezing point depression and the hysteresis of conductivity and dielectric permeability are determined. The zone crystallization of a detonation nanodiamond in aqueous solutions is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Dolmatov, Russ. Chem. Rev. 76, 339 (2007).

    Article  CAS  Google Scholar 

  2. A. J. Kruger, Mater. Chem. 21, 12571 (2011).

    Article  CAS  Google Scholar 

  3. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogots, Nat. Nanotechnol. 7, 11 (2012).

    Article  CAS  Google Scholar 

  4. T. Wang, D. LaMontagne, J. Lynch, J. Zhuang, and Y. C. Cao, Chem. Soc. Rev. 42, 2804 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, and A. I. Konovalov, Dokl. Phys. Chem. 428, 201 (2009).

    Article  CAS  Google Scholar 

  6. S. D. Zakharov and I. V. Mosyagina, Preprint (Lebedev Phys. Inst. RAS, Moscow, 2011).

    Google Scholar 

  7. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L. G. M. Pettersson, A. Nilsson, and S. Shin, Chem. Phys. Lett. 460, 387 (2008).

    Article  CAS  Google Scholar 

  8. Ph. Wernet, D. Nordlund, U. Bergmann, et al., Science (Washington, DC, U. S.) 304, 995 (2004).

    Article  CAS  Google Scholar 

  9. C. Huang, K. T. Wikfeldt, T. Tokushima, et al., Proc. Natl. Acad. Sci. U.S.A. 106, 15214 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. D. A. Konovalov, L. I. Murtazova, I. S. Ryzhkina, and A. I. Konovalov, Dokl. Phys. Chem. 463, 154 (2015).

    Article  CAS  Google Scholar 

  11. I. M. Ageev, G. G. Shishkin, M. D. Bubnova, and Yu.M. Rybin, in Proceedings of the 6th International Congress on Weak and Superweak Fields and Radiations in Biology and Medicine, St. Petersburg, 2012.

    Google Scholar 

  12. N. I. Sinitsyn, V. I. Petrosyan, V. A. Elkin, N. D. Devyatkov, Yu. V. Gulyaev, and O. V. Betskii, Biomed. Radioelektron., No. 1, 3 (1999).

    Google Scholar 

  13. S. S. Batsanov, K. B. Poyarkov, E. V. Lesnikov, and V. R. Shlegel, Russ. J. Phys. Chem. A 85, 712 (2011).

    Article  CAS  Google Scholar 

  14. S. S. Batsanov, S. M. Gavrilkin, A. S. Batsanov, K. B. Poyarkov, I. I. Kulakova, D. W. Johnson, and B. G. Mendis, J. Mater. Chem. 22, 11166 (2012).

    Article  CAS  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  16. M. Ya. Sushko, J. Exp. Theor. Phys. 99, 1183 (2004).

    Article  CAS  Google Scholar 

  17. M. Ya. Sushko, J. Exp. Theor. Phys. 105, 426 (2007).

    Article  CAS  Google Scholar 

  18. M. Ya. Sushko and S. K. Kris’kiv, Tech. Phys. 54, 423 (2009).

    Article  CAS  Google Scholar 

  19. P. Fernandez Diego, Y. Mulev, A. R. H. Goodwin, et al., J. Phys. Chem. Ref. Data 24, 34 (1995).

    Google Scholar 

  20. J. L. Aragones, L. G. MacDowell, and C. Vega, J. Phys. Chem. A 115, 5745 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, and A. I. Konovalov, Dokl. Phys. Chem. 446, 153 (2012).

    Article  CAS  Google Scholar 

  22. J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).

    Article  CAS  Google Scholar 

  23. G. G. Malenkov, J. Struct. Chem. 47, S1 (2006).

    Google Scholar 

  24. Y. Levy and J. N. Onuchic, Ann. Rev. Biophys. Biomol. Struct. 35, 389 (2006).

    Article  CAS  Google Scholar 

  25. A. A. Kronyshev and M. A. Vorotyntsev, Electrodynamics of Media with Spatial Dispersion (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  26. S. V. Shevkunov, J. Exp. Theor. Phys. 108, 447 (2008).

    Article  CAS  Google Scholar 

  27. T. L. Chelidze, A. I. Derevyanko, and O. D. Kurilenko, Electric Spectroscopy of Heterogeneous Systems (Naukova Dumka, Kiev, 1977) [in Russian].

    Google Scholar 

  28. P. Mallet, C. A. Guerin, and A. Sentenac, Phys. Rev. B 72, 014205 (2005).

    Article  CAS  Google Scholar 

  29. N. A. Belova, Extended Abstract of Doctoral (Biol.) Dissertation (Pushchino, 2011).

    Google Scholar 

  30. S. L. Malinovskaya, Extended Abstract of Doctoral (Biol.) Dissertation (Nizh. Novgorod, 2008).

    Google Scholar 

  31. Yu. P. Chukova, The Devyatkov’s Law (Moscow, 2016) [in Russian].

    Google Scholar 

  32. A. S. Batuev, Physiology of Higher Nervous Activity and Sensory Systems (Piter, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  33. R. Wiltschko and W. Wiltschko, Magnetic Orientation in Animals (Springer, Berlin, 1995), p. 73.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Gur’ev.

Additional information

Original Russian Text © D.L. Gur’ev, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 11, pp. 57–67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gur’ev, D.L. Electrophysical Features of Structural Transformations of an Aqueous Colloidal Nanodiamond Solution. Russ. J. Phys. Chem. B 12, 1045–1054 (2018). https://doi.org/10.1134/S1990793118060209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118060209

Keywords

Navigation