Skip to main content
Log in

Titania Gold Composite: Effect of Illumination on Size of Gold Nanoparticles with Consequent Implication on Photocatalytic Water Splitting

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This work deals with the study of photodeposition (PD) of gold nanoparticles (AuNPs) on TiO2 by using different illumination sources, Medium pressure Mercury lamp (ML), Solar Simulator equipped with AM 1.5 (SL) and Tungsten lamp (WL). Different particle size of AuNPs on TiO2 were obtained by photodeposition method under different illumination sources, which clearly proves the influence of light source on the synthesis of Au–TiO2. The plasmonic activity of Au–TiO2 photocatalyst for water splitting reaction was observed to be strongly influenced by the particle size of Au as well as illumination source. Amongst the three different illumination sources used, smallest particle size for AuNP–TiO2 were observed under ML followed by SL and WL, as revealed by TEM analysis. Different illumination sources were also investigated to evaluate the activity of Au–TiO2 samples thus prepared under different illumination conditions. The order of hydrogen evolution rate (HER) observed for Au–TiO2 with different source of illuminations is ML > SL > WL. The highest HER of 1709 μmol/h was observed for Au–TiO2, which was synthesized and evaluated under ML irradiation. This may be explained on the basis of reduced catalytic activity and photothermal effect of Au nanoparticles with increasing particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005). doi 10.1143/JJAP.44.8269

    Article  CAS  Google Scholar 

  2. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010). doi 10.1021/crl001645

    Article  CAS  Google Scholar 

  3. A. Fujishima and K. Honda, Nature 238, 37 (1972). doi 10.1038/238037a0

    Article  CAS  Google Scholar 

  4. A. Fujishima, Jpn. Nanonet. Bull.

  5. M. Ni, M. K. H Leung, D. Y. C. Leung, and K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007). doi 10.1016/j.rser.2005.01.009

    Article  CAS  Google Scholar 

  6. W. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem. 98, 13669 (1994). doi 10.1021/jl00102a038

    Article  Google Scholar 

  7. D. Dvoranova, V. Brezova, M. Mazúr, and A. Malati, Appl. Catal. B: Environ. 37, 91 (2002). doi 10.1016/S0926-3373(01)00335-6

    Article  CAS  Google Scholar 

  8. X.-Z. Shen, Z.-C. Liu, S.-M. Xie, and J. Guo, J. Hazard. Mater. 162, 1193 (2009). doi 10.1016/j.jhazmat.2008.06.004

    Article  CAS  Google Scholar 

  9. H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003). doi 10.1021/jp030133h

    Article  CAS  Google Scholar 

  10. T.-H. Xu, C.-L. Song, Y. Liu, and G.-R. Han, J. Zhejiang Univ. Sci. B 7, 299 (2006). doi 10.1631/jzus.2006.B0299

    Article  CAS  Google Scholar 

  11. S. S. Rayalu, D. Jose, P. A. Mangrulkar, et al., Int. J. Hydrogen Energy 39, 3617 (2014). doi 10.1016/j.ijhydene.2013.11.120

    Article  CAS  Google Scholar 

  12. N. J. G. Xue Ming Wang, Guang Jun Wu, and Lan Dong Li, Adv. Mater. Res. 148, 1258 (2010).

    Article  Google Scholar 

  13. M. Haruta, Catal. Today 36, 153 (1997) doi 10.1016/S0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  14. S. S. Rayalu, D. Jose, M. V. Joshi, et al., Appl. Catal. B: Environ. 142, 684 (2013). doi 10.1016/j.apcatb.2013.05.057

    Article  Google Scholar 

  15. J. Taing, M. H. Cheng, and J. C. Hemminger, ACS Nano 5, 6325 (2011). doi 10.1021/nn201396v

    Article  CAS  Google Scholar 

  16. Y. Hu, X. Song, S. Jiang, and C. Wei, Chem. Eng. J. 274, 102 (2015). doi 10.1016/j.cej.2015.03.135

    Article  CAS  Google Scholar 

  17. M. Maicu, M. C. Hidalgo, G. Colon, and J. A. Navio, J. Photochem. Photobiol. A: Chem. 217, 275 (2011). doi 10.1016/j.jphotochem.2010.10.020

    Article  CAS  Google Scholar 

  18. S. C. Chan and M. A. Barteau, Langmuir 21, 5588 (2005). doi 10.1021/la046887k

    Article  CAS  Google Scholar 

  19. L. Wen, B. Liu, C. Liu, and X. Zhao, J. Wuhan Univ. Technol. Mater. Sci. Ed. 24, 258 (2009). doi 10.1007/sl1595-009-2258-210.1007/sl

    Article  CAS  Google Scholar 

  20. H. Wang, T. You, W. Shi, et al., J. Phys. Chem. C 116, 6490 (2012). doi 10.1021/jp212303q

    Article  CAS  Google Scholar 

  21. A. Tanaka, S. Sakaguchi, K. Hashimoto, and H. Kominami, ACS Catal. 3, 79 (2013). doi 10.1021/cs3006499

    Article  CAS  Google Scholar 

  22. O. Nicoletti, F. de la Pena, R. K. Leary,et al., Nature 502, 80 (2013).

    Article  CAS  Google Scholar 

  23. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 11101 (2005). doi 10.1063/1.1951057

    Article  Google Scholar 

  24. C. Gomes Silva, R. Juarez, T. Marino, et al., J. Am. Chem. Soc. 133, 595 (2011). doi 10.1021/jal086358

    Article  CAS  Google Scholar 

  25. R. Rhodes, M. Beliatis, C. Smith, et al., ATI Univ. Surrey 238, 5358 (1972).

    Google Scholar 

  26. R. M. Navarro Yerga, M. C. Alvarez Galvan, F. del Valle, et al., ChemSusChem. 2, 471 (2009). doi 10.1002/cssc.200900018

    Article  CAS  Google Scholar 

  27. V. Iliev, D. Tomova, L. Bilyarska, and G. Tyuliev, J.Mol. Catal. A: Chem 263, 32 (2007). doi 10.1016/j.molcata.2006.08.019

    Article  CAS  Google Scholar 

  28. M. Murdoch, G. I. N. Watergiyse, M. A. Nadeem, et al., Nat. Chem. 3, 489 (2011).

    Article  CAS  Google Scholar 

  29. E. Kowalska, S. Rau, and B. Ohtani, J. Nanotechnol. 11 (2012). doi 10.1155/2012/361853

  30. X. Huang and M. A. El-Sayed, J. Adv. Res. 1, 13 (2010). doi 10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  31. P. R. Chandran, M. Naseer, N. Udupa, and N. Sandhyarani, Nanotechnology 23, 15602 (2011). doi 10.1088/0957-4484/23/1/015602

    Article  Google Scholar 

  32. S. Kumar, K. S. Gandhi, and R. Kumar, Ind. Eng. Chem. Res. 46, 3128 (2007). doi 10.1021/ie060672j

    Article  CAS  Google Scholar 

  33. O. Neumann, A. S. Urban, J. Day, et al., ACS Nano 7, 42 (2013). doi 10.1021/nn304948h

    Article  CAS  Google Scholar 

  34. A. Polman, ACS Nano 7, 15 (2013). doi 10.1021/nn305869y

    Article  CAS  Google Scholar 

  35. D. Han, Z. Meng, D. Wu, et al., Nanoscale Res. Lett. 6, 457 (2011). doi 10.1186/1556-276X-6-457

    Article  Google Scholar 

  36. R. Kydd, J. Scott, W. Y. Teoh, et al., Langmuir 26, 2099 (2010). doi 10.1021/la902592p

    Article  CAS  Google Scholar 

  37. M. Harada, K. Okamoto, and M. Terazima, Langmuir 22, 9142 (2006). doi 10.1021/la061663i

    Article  CAS  Google Scholar 

  38. P. E. Hopkins, J. C. Duda, R. N. Salaway, et al., Nanoscale Microscale Thermophys. Eng. 12, 320 (2008). doi 10.1080/15567260802591985

    Article  CAS  Google Scholar 

  39. M. S. Dresselhaus, Solid State Physics, Part II: Optical Properties of Solids (2001).

    Google Scholar 

  40. A. Bumajdad and M. Madkour, Phys. Chem. Chem. Phys. 16, 7146 (2014). doi 10.1039/c3cp54411g

    Article  CAS  Google Scholar 

  41. D. Tsukamoto, Y. Shiraishi, Y. Sugano, et al., J. Am. Chem. Soc. 134, 6309 (2012). doi 10.1021/ja2120647

    Article  CAS  Google Scholar 

  42. A. Primo, A. Corma, and H. Garcia, Phys. Chem. Chem. Phys. 13, 886 (2011). doi 10.1039/C0CP00917B

    Article  CAS  Google Scholar 

  43. Z. W. Seh, S. Liu, M. Low, et al., Adv. Mater. 24, 2310 (2012). doi 10.1002/adma.201104241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girivyankatesh Hippargi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hippargi, G., Maddigapu, P.R., Labhsetwar, N. et al. Titania Gold Composite: Effect of Illumination on Size of Gold Nanoparticles with Consequent Implication on Photocatalytic Water Splitting. Russ. J. Phys. Chem. B 11, 1002–1011 (2017). https://doi.org/10.1134/S1990793117060215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117060215

Keywords

Navigation