Skip to main content
Log in

Analysis of space–time profiles of the concentrations of contaminants in soil during electrokinetic remediation

  • Chemical Physics of Ecological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A new semiempirical method for the mathematical description of the space–time concentration profiles of contaminants in soil during its electrokinetic remediation is proposed. The method is based on approximating the experimental data on the spatiotemporal behavior of the concentration, C = C(D a , t). The experimental and theoretical C = C(D a , t) dependences reported in the literature and obtained in our studies were approximated by seventh order polynomials. For example, the space–time concentration profiles of chlorinated hydrocarbon contaminants in unsaturated soils, such as tetrachloroethylene, trichloroethylene and carbon tetrachloride, have been successfully described by a polynomial function with determination coefficients of R 2 = 0.9941, 0.9988, and 0.9972, respectively. A pilot test setup for studying the electrokinetic remediation of soils contaminated with mercury compounds, with ten sampling sections and replaceable cartridges with ionites, was designed and built. This setup allowed measuring the space–time concentration profile of mercury in soil samples during electrokinetic remediation. This profile obtained was approximated by a seventh order polynomials with a determination coefficient of R 2 = 0.9929. It is shown that the polynomial approximation of the space–time concentration profiles of contaminants in soil describes the experimental C = C(D a , t) dependences no worse (sometimes better) than the Poisson–Nernst–Planck model for ionic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Wuana and F. E. Okieimen, ISRN Ecol. 2011, 1 (2011).

    Article  Google Scholar 

  2. M. T. Alcantara, J. Gomez, M. Pazos, and M. A. Sanroman, Geoderma 173–174, 128 (2012).

    Article  Google Scholar 

  3. S. Annamalai, M. Santhanam, M. Sundaram, and M. P. Curras, Chemosphere 117, 673 (2014).

    Article  CAS  Google Scholar 

  4. D. Rosestolato, R. Bagatin, and S. Ferro, Chem. Eng. J. 264, 16 (2015).

    Article  CAS  Google Scholar 

  5. Yee-Sern Ng, B. S. Gupta, and M. A. Hashim, Separ. Purif. Technol. 156, 403 (2015).

    Article  CAS  Google Scholar 

  6. D. Huang, Q. Xu, J. Cheng, X. Lu, and H. Zhang, Int. J. Electrochem. Sci. 7, 4528 (2012).

    CAS  Google Scholar 

  7. E. G. Sumbarda-Ramos, O. X. Guerrero-Gutierrez, B. Murillo-Rivera, et al., J. Appl. Electrochem. 40, 1255 (2010).

    Article  CAS  Google Scholar 

  8. N. D. Mu’azu, M. H. Essa, and S. Lukman, in Proceedings of the 14th International Conference on Environmental Science and Technology (Global Network on Environ. Sci. Technol., Univ. Aegean, 2015), p. 01331.

    Google Scholar 

  9. S.-O. Kim, J.-J. Kim, S.-T. Yun, and K.-W. Kim, Water, Air, Soil Pollut. 150, 135 (2003).

    Article  CAS  Google Scholar 

  10. T. V. Grinevich, K. N. Dvoeglazov, A. A. Solov’yanov, et al., Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva) 49, 76 (2005).

    CAS  Google Scholar 

  11. I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, V. S. Grigoriev, I. D. Epinatiev, A. V. Bloshenko, and A. E. Goncharova, Russ. J. Phys. Chem. B 9, 132 (2015).

    Article  CAS  Google Scholar 

  12. I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, E. O. Panin, and N. A. Sakharova, Russ. J. Phys. Chem. B 9, 295 (2015).

    Article  CAS  Google Scholar 

  13. R. F. Thornton and A. P. Shapiro, Emerging Technologies in Hazardous Waste Management V, ACS Sympos. Ser. (Am. Chem. Soc, Washington, DC, 1995), Chap. 4, p. 33. doi 10.1021/bk-1995-0607.ch004

    Book  Google Scholar 

  14. D. S. Schultz, J. Hazard. Mater. 55, 81 (1997).

    Article  CAS  Google Scholar 

  15. A. P. Shapiro and R. F. Probsteln, Environ. Sci. Technol. 27, 283 (1993).

    Article  CAS  Google Scholar 

  16. J. G. Ibanez, M. M. Singh, R. M. Pike, and Z. Szafran, J. Chem. Educ. 75, 634 (1998).

    Article  CAS  Google Scholar 

  17. P. Tsai, C.-H. Huang, and E. Lee, Langmuir 27, 13481 (2011).

    Article  CAS  Google Scholar 

  18. A. N. Alshawabkeh and Y. B. Acar, J. Environ. Sci. Health, Pt. A 27, 1835 (1992).

    Google Scholar 

  19. Y. B. Acar and R. J. Galr, US Patent No. 5137608 (1992). http://www.freepatentsonline.com/5137608.pdf.

    Google Scholar 

  20. J. M. Dzenitis, Environ. Sci. Technol. 31, 1191 (1997).

    Article  CAS  Google Scholar 

  21. N. J. Cherepy and D. Wildenschild, Environ. Sci. Technol. 37, 3024 (2003).

    Article  CAS  Google Scholar 

  22. R. F. Probstein, P. C. Renaud, and A. P. Shapiro, US Patent No. 5074986 (1991). http://www.freepatentsonline. com/5074986.pdf.

    Google Scholar 

  23. L. M. Ottosen, H. K. Hansen, S. Laursen, and A. Villumsen, Environ. Sci. Technol. 31, 1711 (1997).

    Article  CAS  Google Scholar 

  24. R. F. Probstein and R. E. Hicks, Science 260, 498 (1993).

    Article  CAS  Google Scholar 

  25. G. R. Eykholt and D. E. Daniel, J. Geotech. Eng. 120, 797 (1994).

    Article  Google Scholar 

  26. W. Liu, J. Differ. Equat. 246, 428 (2009).

    Article  Google Scholar 

  27. A. N. Alshawabkeh and Y. B. Acar, J. Geotech. Eng. 122, 186 (1996).

    Article  CAS  Google Scholar 

  28. Y. B. Acar, A. N. Alshawabkeh, and R. A. U. S. Parker, Report No. EPA/600/R-97/054 (US Environ. Protect. Agency, Cincinnati, OH, 1997).

    Google Scholar 

  29. E. Huckel, Phys. Z. 25, 204 (1924).

    Google Scholar 

  30. H. Ohshima, Adv. Colloid Interface Sci. 62, 189 (1995).

    Article  CAS  Google Scholar 

  31. D. C. Henry, Proc. Roy. Soc. London, Ser. A 133, 106 (1931).

    Article  CAS  Google Scholar 

  32. R. W. O’Brien and L. R. White, J. Chem. Soc., Faraday Trans. 74, 1607 (1978).

    Article  Google Scholar 

  33. P. H. Wiersema, A. L. Loeb, and J. T. Overbeek, J. Colloid Interface Sci. 22, 78 (1966).

    Article  CAS  Google Scholar 

  34. M. Z. von Smoluchowski, Phys. Chem. 92, 129 (1917).

    Google Scholar 

  35. D. C. Montgomery, Design and Analysis of Experiments, 8th ed. (Wiley, Danvers, 2013).

    Google Scholar 

  36. J.-H. Chang, Z. Qiang, and C.-P. Huang, Colloids Surf. A 287, 86 (2006).

    Article  CAS  Google Scholar 

  37. J. M. Paz-Garcia, B. Johannesson, L. M. Ottosen, et al., Sep. Purif. Technol. 79, 183 (2011).

    Article  CAS  Google Scholar 

  38. Yu. A. Leikin, I. V. Kumpanenko, A. V. Roshchin, et al., Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva) 57 (1), 52 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kumpanenko.

Additional information

Original Russian Text © I.V. Kumpanenko, A.V. Roshchin, N.A. Ivanova, A.V. Bloshenko, I.P. Tikhonov, A.M. Skryl’nikov, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 7, pp. 5–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumpanenko, I.V., Roshchin, A.V., Ivanova, N.A. et al. Analysis of space–time profiles of the concentrations of contaminants in soil during electrokinetic remediation. Russ. J. Phys. Chem. B 11, 543–554 (2017). https://doi.org/10.1134/S199079311704008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311704008X

Keywords

Navigation