Skip to main content
Log in

Calculation of shock wave propagation in water containing reactive gas bubbles

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Frolov, F. S. Frolov, V. S. Aksenov, and K. A. Avdeev, Request No. PCT/RU2013/001148 (2013). http://www.idgcenter.ru/patentPCT-RU2013-001148. htm

    Google Scholar 

  2. K. A. Avdeev, V. S. Aksenov, A. A. Borisov, R. R. Tukhvatullina, S. M. Frolov, and F. S. Frolov, Gorenie i Vzryv (Combustion and Explosion) 8 (2), 57 (2015).

    Google Scholar 

  3. K. A. Avdeev, V. S. Aksenov, A. A. Borisov, R. R. Tukhvatullina, S. M. Frolov, and F. S. Frolov, Russ. J. Phys. Chem. B 9, 363 (2015).

    Article  CAS  Google Scholar 

  4. K. A. Avdeev, V. S. Aksenov, A. A. Borisov, S. M. Frolov, F. S. Frolov, and I. O. Shamshin, Russ. J. Phys. Chem. B 9, 895 (2015).

    Article  CAS  Google Scholar 

  5. T. Hasegawa and T. Fujiwara, in Proceedings of the 19th International Symposium on Combustion (Combust. Inst., Pittsburgh, PA, 1982), p.675.

    Google Scholar 

  6. A. I. Sychev, Fiz. Goreniya Vzryva 21 (2), 130 (1985).

    CAS  Google Scholar 

  7. A. I. Sychev, Fiz. Goreniya Vzryva 21 (3), 103 (1985).

    CAS  Google Scholar 

  8. A. I. Sychev and A. V. Pinaev, Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 133 (1986).

    Google Scholar 

  9. A. V. Pinaev and A. I. Sychev, Fiz. Goreniya Vzryva 23 (6), 76 (1987).

    CAS  Google Scholar 

  10. A. V. Trotsyuk and P. A. Fomin, Fiz. Goreniya Vzryva 28 (4), 129 (1992).

    CAS  Google Scholar 

  11. V. Sh. Shagapov and N. K. Vakhitova, Fiz. Goreniya Vzryva, No. 6, 14 (1989).

    Google Scholar 

  12. A. V. Pinaev and I. I. Kochetkov, Combust. Explos., Shock Waves 43, 717 (2007).

    Article  Google Scholar 

  13. V. Sh. Shagapov and D. V. Abdrashitov, Fiz. Goreniya Vzryva, No. 6, 89 (1992).

    Google Scholar 

  14. S. M. Frolov, V. Ya. Basevich, M. G. Neuhaus, and R. Tatshl, in Advanced Computation and Analysis of Combustion, Ed. by G. D. Roy, S. M. Frolov, and P. Givi, (ENAS, Moscow, 1997), p.537.

  15. S. V. Patankar and D. B. Spalding, Int. J. Heat Mass Transfer 15, 1510 (1972).

    Google Scholar 

  16. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer, New York, 1996).

    Book  Google Scholar 

  17. P. K. Sweby, SIAM J. Numer. Anal. 21, 995 (1984). doi doi 10.1137/0721062

    Article  Google Scholar 

  18. V. K. Kedrinskii, Hydrodynamics of Explosion: Models and Experiment (Sib. Otdel. RAN, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  19. S. S. Kutateladze and V. E. Nakoryakov, Waves and Heat and Mass Transfer in Liquid–Gas Systems (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov.

Additional information

Original Russian Text © K.A. Avdeev, V.S. Aksenov, A.A. Borisov, D.G. Sevastopoleva, R.R. Tukhvatullina, S.M. Frolov, F.S. Frolov, I.O. Shamshin, B. Basara, W. Edelbauer, K. Pachler, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 4, pp. 20–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, K.A., Aksenov, V.S., Borisov, A.A. et al. Calculation of shock wave propagation in water containing reactive gas bubbles. Russ. J. Phys. Chem. B 11, 261–271 (2017). https://doi.org/10.1134/S1990793117020142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117020142

Keywords

Navigation