Skip to main content
Log in

A density functional theory and quantum theory of atoms in molecules study on hydrogen bonding interaction between paracetamol and water molecules

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

To consider the hydrogen bonding interactions between paracetamol and water molecules, probable complexes of paracetamol from three active sites (carbonyl oxygen atom, hydroxyl oxygen atom, and nitrogen atom) with H2O molecule were formed. The optimized geometries and total energies have been obtained at the B3PW91/6-31+G(d, p) level of theory. Comparison of hydrogen bond lengths and the energies of complexes showed hydrogen bond that form between the oxygen atom of the carbonyl group and hydrogen atom is stronger than others. Moreover, an increase in the number of hydrogen bonds increases stability of paracetamol-water complexes. At the end, the QTAIM was applied to explain the nature of the hydrogen bonds and confirm the more stability by complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. M. Diniz, R. S. Borges, and C. N. Alves, J. Mol. Struct.: THEOCHEM 673, 93 (2004).

    Article  CAS  Google Scholar 

  2. M. Shukla, M. Srivastava, and S. Saha, J. Mol. Struct. 1021, 153 (2012).

    Article  CAS  Google Scholar 

  3. K. M. DiGiovanni, A. K. Hatstat, J. Rote, and M. Cafiero, Comput. Theor. Chem. 1007, 41 (2013).

    Article  CAS  Google Scholar 

  4. G. W. An, H. Zhang, X. L. Cheng, Q. L. Zhuo, and Y. C. Lv, Struct. Chem. 19, 613 (2008).

    Article  CAS  Google Scholar 

  5. Y. Danten, T. Tassaing, and M. Besnard, J. Phys. Chem. A 110, 8986 (2006).

    Article  CAS  Google Scholar 

  6. R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).

    Article  CAS  Google Scholar 

  7. L. Bondesson, K. V. Mikkelsen, Y. Luo, P. Garberg, and H. Ågren, J. Mol. Struct.: THEOCHEM 776, 61 (2006).

    Article  CAS  Google Scholar 

  8. C. F. Matta and R. J. Boyd, The Quantum Theory of Atoms in Molecules (Wiley-VCH, Weinheim, 2007), p.1.

    Book  Google Scholar 

  9. P. K. Sahu and S. L. Lee, Int. J. Quantum Chem. 107, 2015 (2007).

    Article  CAS  Google Scholar 

  10. Y. Wang, M. Guo, S. Wei, S. Yin, Y. Wang, and Z. Song, Comput. Theor. Chem. 1049, 28 (2014).

    Article  CAS  Google Scholar 

  11. S. Schlücker, R. K. Singh, B. Asthana, J. Popp, and W. Kiefer, J. Phys. Chem. A 105, 9983 (2001).

    Article  Google Scholar 

  12. S. Li, V. R. Cooper, T. Thonhauser, A. Puzder, and D. C. Langreth, J. Phys. Chem. A 112, 9031 (2008).

    Article  CAS  Google Scholar 

  13. J. Lv and D. Yang, Comput. Theor. Chem. 970, 6 (2011).

    Article  CAS  Google Scholar 

  14. G. P. Vitorino, G. D. Barrera, M. R. Mazzieri, R. Binning, and D. E. Bacelo, Chem. Phys. Lett. 432, 538 (2006).

    Article  CAS  Google Scholar 

  15. T. Li and S. Feng, Pharm. Res. 23, 2326 (2006).

    Article  CAS  Google Scholar 

  16. M. D. Esrafili, H. Behzadi, and N. L. Hadipour, Biophys. Chem. 128, 38 (2007).

    Article  CAS  Google Scholar 

  17. H. C. S. Chan, J. Kendrick, M. A. Neumann, and F. J. J. Leusen, Cryst. Eng. Commun. 15, 3799 (2013).

    Article  CAS  Google Scholar 

  18. Y. V. Nelyubina, I. V. Glukhov, M. Y. Antipin, and K. A. Lyssenko, Chem. Commun. 46, 3469 (2010).

    Article  CAS  Google Scholar 

  19. A. Fonari, E. S. Leonova, and M. Y. Antipin, Polyhedron 30, 1710 (2011).

    Article  CAS  Google Scholar 

  20. R. N. Singh, A. Kumar, R. K. Tiwari, P. Rawat, and V. P. Gupta, J. Mol. Struct. 1035, 427 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pourestarabadi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehestani, M., Pourestarabadi, S. A density functional theory and quantum theory of atoms in molecules study on hydrogen bonding interaction between paracetamol and water molecules. Russ. J. Phys. Chem. B 10, 890–896 (2016). https://doi.org/10.1134/S1990793116060191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116060191

Keywords

Navigation