Skip to main content
Log in

Thermal reaction characterization of micron-sized aluminum powders in CO2

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The thermal reaction characterization of micron-sized aluminium powder in carbon dioxide were investigated by simultaneous thermal analysis technology (TG/DSC), using a series of heating rates (5, 10, 15, 20°C/min). The results showed that the reaction process of micron-sized aluminium powder in carbon dioxide was divided into three stages: the initial slow oxidation stage, the sharp oxidation stage and the last oxidation stage. The thermal performance was increased with the increase in the heating rates. Evolution of the samples was determined by collecting the products at the initial, sharp, and last oxidation stages of the process. The reaction products morphology was examined using scanning electron microscopy (SEM). The corresponding chemical changes were analysed by X-ray diffraction spectrometry (XRD). The effects of heating rate on the thermal reaction characteristics were discussed. A new reaction mechanism of micron-sized Al particle in CO2 with gradually increased temperature was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yuasa and H. Isoda, Symp. Combust. Proc. 22, 1635 (1989).

    Article  Google Scholar 

  2. E. I. Shafirovich, A. Shiriaev, and U. Goldshleger, J. Propuls. Power 9, 197 (1993).

    Article  CAS  Google Scholar 

  3. E. Y. Shafirovich and U. I. Goldshleger, J. Propuls. Power 13, 395 (1997).

    Article  CAS  Google Scholar 

  4. E. Y. Shafirovich and U. I. Goldshleger, J. Brit. Interplanet. Soc. 48, 315 (1995).

    Google Scholar 

  5. E. Shafirovich, A. Mukasyan, L. Thiers, A. Varma, B. Legrand, C. Chauveau, and I. Gokalp, Combust. Sci. Technol. 174, 125 (2002).

    Article  CAS  Google Scholar 

  6. Y. Yavor, V. Rosenband, and A. Gany, Int. J. Energ. Mater. Chem. Propuls. 9, 477 (2010).

    Google Scholar 

  7. R. A. Yetter, G. A. Risha, and S. F. Son, Combust. Inst. 32, 1819 (2009).

    Article  CAS  Google Scholar 

  8. E. L. Dreizin, Prog. Energy Combust. Sci. 35, 141 (2009).

    Article  CAS  Google Scholar 

  9. V. Rosenband and A. Gany, Int. J. Energ. Mater. Chem. Propuls. 10, 19 (2011).

    Google Scholar 

  10. Y. Yavor, V. Rosenband, and A. Gany, Proc. Inst. Mech. Eng. G: J. Aerospace Eng. (2013). doi 10.1177/ 0954410013495638

    Google Scholar 

  11. X. Zhu, M. Schoenitz, and E. L. Dreizin, J. Phys. Chem. B 113, 6768 (2009).

    CAS  Google Scholar 

  12. S. Rossi, E. L. Dreizin, and C. K. Law, Combust. Sci. Technol. 164, 209 (2001).

    Article  CAS  Google Scholar 

  13. B. Legrand, M. Marion, C. Chauveau, I. Gokalp, and E. Shafirovich, Combust. Sci. Technol. 165, 151 (2001).

    Article  CAS  Google Scholar 

  14. L. Jeurgens, W. Sloof, F. Tichelaar, and E. Mittemeijer, Phys. Rev. B 62, 4707 (2000).

    Article  CAS  Google Scholar 

  15. M. A. Trunov, M. Schoenitz, X. Zhu, and E. L. Dreizin, Combust. Flame 140, 310 (2005).

    Article  CAS  Google Scholar 

  16. K. Brandstadt, D. L. Frost, and J. A. Kozinski, Proc. Combust. Inst. 32, 1913 (2009).

    Article  CAS  Google Scholar 

  17. I. Levin and D. Brandon, J. Am. Ceram. Soc. 81, 1995 (1998).

    Article  CAS  Google Scholar 

  18. M. A. Trunov, M. Schoenitz, and E. L. Dreizin, Propellants, Explos., Pyrotech. 30, 36 (2005).

    Article  CAS  Google Scholar 

  19. M. Fanfei and Z. Mingxu, J. Chin. Coal. Soc. 30, 104 (2005).

    Google Scholar 

  20. Q. Nie, S. Sun, Z. Li, X. Zhang, S. Wu, and Y. Qin, J. Combust. Sci. Technol. 7, 72 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlan Sun.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Wang, Q., Sun, Y. et al. Thermal reaction characterization of micron-sized aluminum powders in CO2 . Russ. J. Phys. Chem. B 10, 644–650 (2016). https://doi.org/10.1134/S1990793116040163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116040163

Keywords

Navigation