Skip to main content
Log in

Ignition of cyclopropane in shock waves

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The values of the ignition delay time of cyclopropane–oxygen–argon (cyclo-C3H6–O2–Ar) mixtures of different compositions (φ = 0.333, 1, and 3) behind reflected shock waves at temperatures of 1200–1640 K and a pressure of (0.55 ± 0.05) MPa are measured. A kinetic mechanism of cyclopropane ignition using the known rate constants for the most important elementary reactions is developed. The mechanism closely describes both our own and published experimental data on the delay time of ignition of cyclopropane in shock waves over wide ranges of temperature (1200–2100 K), pressure (0.1–0.55 MPa), cyclopropane concentrations (0.05–11 vol %), and oxygen concentrations (0.25–21 vol %). It is shown that, with increasing fraction of diluent gas in the mixture, the dependence of the ignition delay time on the fuel-to-oxidizer equivalence ratio changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Fells and T. Lowes, Nature 210, 623 (1966).

    Article  CAS  Google Scholar 

  2. F. Battin-Leclerc, Progr. Energy Combust. Sci. 34, 440 (2008). https://hal.archives-ouvertes.fr/hal-00772058/file/Supplemental_data_2.txt.

    Article  CAS  Google Scholar 

  3. L. J. Drummond and J. Kikkert, Aust. J. Chem. 22, 1355 (1969).

    Article  CAS  Google Scholar 

  4. V. G. Slutsky, O. D. Kazakov, E. S. Severin, et al., Combust. Flame 94, 108 (1993).

    Article  CAS  Google Scholar 

  5. J. P. Orme, J. M. Simmie, and H. J. Curran, in Proceedings of the 4th European Combustion Meeting (Belgian Sect. Combust. Inst., Louvain-la-Neuve, Belgium, 2005), p.1.

    Google Scholar 

  6. M. O’Conaire, H. J. Curran, J. M. Simmie, et al., Int. J. Chem. Kinet. 36, 603 (2004). https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustionc8c16_n_alkanes.

    Article  Google Scholar 

  7. H. Wang, S. J. Warner, M. A. Oehlschlaeger, et al., Combust. Flame 157, 1976 (2010). http://ignis.usc.edu/USC_Mech_II.htm.

    Article  CAS  Google Scholar 

  8. E. L. Petersen, D. M. Kalitan, S. Simmons, et al., in Proceedings of the 31st International Symposium on Combustion (Combust. Inst., Pittsburgh, PA, 2007), p. 447. http://c3.nuigalway.ie/natural_gas.html.

    Google Scholar 

  9. V. Sharapov, Piezoceramic Sensors, Microtechnology and MEMS (Springer, Berlin, Heidelberg, 2011), Chap. 1, p.453.

    Google Scholar 

  10. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  11. A. M. Tereza, V. G. Slutskii, and E. S. Severin, Russ. J. Phys. Chem. B 3, 99 (2009).

    Article  Google Scholar 

  12. A. M. Tereza, V. G. Slutskii, and E. S. Severin, Khim. Fiz. 22 (6), 30 (2003).

    CAS  Google Scholar 

  13. A. M. Tereza, V. G. Slutskii, and E. S. Severin, Russ._J. Phys. Chem. B 4, 475 (2010).

    Article  Google Scholar 

  14. G. L. Agafonov and A. M. Tereza, Russ. J. Phys. Chem. B 9, 92 (2015).

    Article  CAS  Google Scholar 

  15. R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, CHEMKIN III: Tech. Report No. SAND96-8216 (Sandia Natl. Laboratories, Livermore CA, 1996).

    Google Scholar 

  16. A. Burcat and B. McBride, Report No. TAE-804 (NASA, Cleveland, OH, 1997).

    Google Scholar 

  17. A. Burcat, Report No. TAE-867 (Technion-Israel Inst. Technol., Tel-Aviv, 2001). http://garfield.chem.elte.hu/Burcat/burcat.html.

    Google Scholar 

  18. I. Glassman, Combustion, 3rd ed. (Academic Press, San Diego, CA, 1996), p.631.

    Google Scholar 

  19. Y. Hidaka and T. Oki, Chem. Phys. Lett. 141, 212 (1987).

    Article  CAS  Google Scholar 

  20. R. M. Marshall, H. Purnell, and A. Sheppard, J. Chem. Soc. Faraday Trans. 82, 929 (1986).

    Article  CAS  Google Scholar 

  21. W. E. Falconer, J. H. Knox, and A. F. Trotman-Dickenson, J. Chem. Soc., 782 (1961). doi 10.1039/JR9610000782

    Google Scholar 

  22. E. W. Wilson, Jr., A. A. Sawyer, and H. A. Sawyer, J. Phys. Chem. A 105, 1445 (2001).

    Article  CAS  Google Scholar 

  23. B. Husson, M. Ferrari, O. Herbinet, et al., in Proceedings of the 34th International Symposium on Combustion (Combust. Inst., Pittsburgh, PA, 2013), p.325.

    Google Scholar 

  24. J. D. DeSain, S. J. Klippenstein, C. A. Taatjes, et al., J. Phys. Chem. A 107, 1992 (2003).

    Article  CAS  Google Scholar 

  25. J. A. Kerr, A. Smith, and A. F. Trotman-Dickenson, J. Chem. Soc. A, 1400 (1969). doi 10.1039/J19690001400

    Google Scholar 

  26. S. M. Burke, U. Burke, R. McDonagh, et al., Combust. Flame 162, 296 (2015).

    Article  CAS  Google Scholar 

  27. Y. Hidaka, T. Nakamura, H. Tanaka, et al., Int. J. Chem. Kinet. 24, 761 (1992).

    Article  CAS  Google Scholar 

  28. B. Eiteneer and M. Frenklach, Int. J. Chem. Kinet. 35, 391 (2003). http://www.me.berkeley.edu/gri_mech/.

    Article  CAS  Google Scholar 

  29. Y. Hidaka, T. Nishimori, K. Sato, et al., Combust. Flame 117, 755 (1999).

    Article  CAS  Google Scholar 

  30. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., J. Phys. Chem. Ref. Data 21, 411 (1992).

    Article  CAS  Google Scholar 

  31. Y. Feng, J. T. Niiranen, A. Bencsura, et al., J. Phys. Chem. 97, 871 (1993).

    Article  CAS  Google Scholar 

  32. H. Wang and M. Frenklach, Combust. Flame 110, 173 (1997).

    Article  CAS  Google Scholar 

  33. V. D. Knyazev, A. Bencsura, S. I. Stoliarov, and I. R. Slagle, J. Phys. Chem. 100, 11353 (1996).

    Google Scholar 

  34. M. Klatt, M. Rohrig, and H. Gg. Wagner, Ber. Bunsen-Ges. Phys. Chem. 95, 1163 (1991).

    Article  CAS  Google Scholar 

  35. P. Cadman, G. O. Thomas, and P. Butler, Phys. Chem. Chem. Phys. 2, 5411 (2000).

    Article  CAS  Google Scholar 

  36. R. A. Alvarez and C. B. Moore, J. Phys. Chem. 98, 174 (1994).

    Article  CAS  Google Scholar 

  37. Ch. Dombrowsky and H. Gg. Wagner, Ber. Bunsen-Ges. Phys. Chem. 96, 1048 (1992).

    Article  CAS  Google Scholar 

  38. A. M. Tereza, Cand. Sci. (Phys. Math.) Dissertation (Inst. Chem. Phys. USSR, Moscow, 1990).

    Google Scholar 

  39. T. Kruse and P. Roth, J. Phys. Chem. A 101, 2138 (1997).

    Article  CAS  Google Scholar 

  40. A. Bergeat, T. Calvo, G. Dorthe, and J.-C. Loison, J. Phys. Chem. A 103, 6360 (1999).

    Article  CAS  Google Scholar 

  41. A. Bergeat, S. Moisan, R. Mereau, and J.-C. Loison, Chem. Phys. Lett. 450, 21 (2009).

    Article  Google Scholar 

  42. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).

    Article  CAS  Google Scholar 

  43. A. M. Tereza, V. N. Smirnov, P. A. Vlasov, et al., in Proceedings of the 30th International Conference on Interaction of Intense Energy Fluxes with Matter (IIEFM-2015) (JPCS, Elbrus, Kabardino-Balkaria, 2015). http://iopscience.iop.org/article/10.1088/1742-6596/653/1/012059.

    Google Scholar 

  44. Z. Hong, D. F. Davidson, and R. K. Hanson, Combust. Flame 158, 633 (2011).

    Article  CAS  Google Scholar 

  45. J. W. Sutherland, P. M. Patterson, and R. B. Klemm, in Proceedings of the 23rd International Symposium on Combustion (Combust. Inst., Pittsburgh, PA, 1991), p.51.

    Google Scholar 

  46. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., J. Phys. Chem. Ref. Data 23, 847 (1994).

    Article  CAS  Google Scholar 

  47. J. Troe, J. Phys. Chem. A 109, 8320 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tereza.

Additional information

Original Russian Text © P.A. Vlasov, A.A. Garmash, A.M. Tereza, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 7, pp. 23–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, P.A., Garmash, A.A. & Tereza, A.M. Ignition of cyclopropane in shock waves. Russ. J. Phys. Chem. B 10, 602–614 (2016). https://doi.org/10.1134/S199079311604014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311604014X

Keywords

Navigation