Skip to main content
Log in

Reactions of initiation of the autoignition of H2–O2 mixtures in shock waves

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The initiation of the autoignition of hydrogen–oxygen–argon mixtures behind reflected shock waves is studied by absorption and emission spectrophotometry in the temperature range of 960 < T < 1670 K at pressures of ~0.1 MPa. Introduction of Mo(CO)6 additive in an amount of ~80 ppm made it possible to study the effect of O atoms on the shortening of the ignition delay time of H2–O2–Ar mixtures. A kinetic modeling of our own and published experimental data at temperatures of 930 < T < 2500 K and pressures of 0.05 < P < 8.7 MPa enabled to establish how the initiation reactions influence the process of self-ignition and to evaluate the rate constant for one of the initiation reactions: k(H2 + O2 → 2OH) = (3 ± 1) × 1011exp(–E a/RT), cm3 mol–1 s–1, where E a = (40 ± 2) kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yamada, N. Kitabayashi, A. K. Hayashi, et al., Int. J. Hydrogen Energy 36, 256 (2011).

    Google Scholar 

  2. B. E. Gel’fand, M. V. Sil’nikov, S. P. Medvedev, et al., Thermal Gas Dynamics of Hydrogen Combustion and Explosion (Politekh. Univ, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  3. A. A. Abagyan, E. O. Adamov, and E. V. Burlakov, in Proceedings of the IAEA International Conference on One Decade After Chernobyl: Nuclear Safety Aspects (Springer, Vienna, Austria, 1996), Report IAEA-J4-TC972, p. 46.

    Google Scholar 

  4. F. L. Dryer and M. Chaos, Combust. Flame 152, 293 (2008).

    Article  CAS  Google Scholar 

  5. A. Schonborn, P. Sayad, A. A. Konnov, et al., Int. J. Hydrogen Energy 39, 12166 (2014).

    Article  Google Scholar 

  6. C. Olm, I. G. Zsely, R. Palvolgyi, et al., Combust. Flame 161, 2219 (2014).

    Article  CAS  Google Scholar 

  7. V. A. Pavlov and G. Ya. Gerasimov, J. Eng. Phys. Thermophys. 87, 1291 (2014).

    Article  CAS  Google Scholar 

  8. T. Weydahla, M. Poyyapakkamb, M. Seljeskoga, et al., Int. J. Hydrogen Energy 36, 12025 (2011).

    Article  Google Scholar 

  9. S. P. Medvedev, G. L. Agafonov, S. V. Khomik, and B. E. Gelfand, Combust. Flame 157, 1436 (2010).

    Article  CAS  Google Scholar 

  10. W. Tang and K. Brezinsky, Int. J. Chem. Kinet. 38, 75 (2006).

    Article  CAS  Google Scholar 

  11. F. L. Dryer, F. M. Haas, J. Santner, et al., Progress Energy Combust. Sci. 44, 19 (2014).

    Article  Google Scholar 

  12. G. A. Pang, D. F. Davidson, and R. K. Hanson, in Proceedings of the 32nd International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 2009), p. 181.

    Google Scholar 

  13. A. V. Drakon, A. V. Emelianov, A. V. Eremin, et al., Phys. Rev. Lett. 109, 183201 (2012).

    Article  CAS  Google Scholar 

  14. A. P. Genich, S. V. Kulikov, G. B. Manelis, and S. L. Chereshnev, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 2, 144 (1990).

    Google Scholar 

  15. O. G. Divakov, A. V. Eremin, V. S. Ziborov, and V. E. Fortov, Dokl. Chem. 373, 141 (2000).

    Google Scholar 

  16. O. V. Skrebkov and S. P. Karkach, Kinet. Catal. 48, 367 (2007).

    Article  CAS  Google Scholar 

  17. B. E. Gelfand, O. E. Popov, S. P. Medvedev, et al., in Proceedings of the 20th International Symposium on Shock Waves (Panther, Great Keppel Island, Austalia, 1995), p. 303.

    Google Scholar 

  18. Z. Hong, PhD Dissertation (Stanford Univ., Stanford, CA, 2010).

    Google Scholar 

  19. J. Urzay, N. Kseib, D. F. Davidson, et al., Combust. Flame 161, 1 (2014).

    Article  CAS  Google Scholar 

  20. S. G. Zaytzev and R. I. Soloukhin, in Proceedings of the 8th International Symposium on Combustion (Williams and Wilkins, Baltimore, MD, 1961), p. 344.

    Google Scholar 

  21. V. V. Martynenko, O. G. Penyaz’kov, K. A. Ragotner, and S. I. Shabunya, Inzh.-Fiz. Zh. 77 4, 100 (2004).

    Google Scholar 

  22. S. Pirozzoli, F. Grasso, and T. B. Gatski, Phys. Fluids 16, 530 (2004).

    Article  CAS  Google Scholar 

  23. E. Dzieminska and A. K. Hayashi, Int. J. Hydrogen Energy 38, 4185 (2013).

    Article  CAS  Google Scholar 

  24. A. A. Borisov, N. M. Rubtsov, G. I. Skachkov, and K. Ya. Troshin, Russ. J. Phys. Chem. B 6, 517 (2012).

    Article  CAS  Google Scholar 

  25. V. V. Leshchevich and O. G. Penyaz’kov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2012), No. 5, p. 16 [in Russian].

  26. E. S. Losik, V. V. Leshchevich, K. L. Sevruk, and O. G. Penyaz’kov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2012), No. 5, p. 11 [in Russian].

    Google Scholar 

  27. G. L. Agafonov and A. M. Tereza, Russ. J. Phys. Chem. B 9, 92 (2015).

    Article  CAS  Google Scholar 

  28. S. P. Karach and V. I. Osherov, J. Chem. Phys. 110, 11918 (1999).

    Article  Google Scholar 

  29. E. Axdahl, A. Kumar, and A. Wilhite, Paper No. 2013-3900 (AIAA, Reston, VA, 2013). http://wwwvulcan-cfdlarcnasa. gov/WebPage_manual/vulcan_manual_nschap9html.

    Google Scholar 

  30. D. G. Goodwin, Defining Phases and Interfaces, CANTERA 1.5 (California Inst. Technology, Pasadena, CA, 2003), p. 66. http://wwwcanteraorg/docs/sphinx/ html/matlab/input-tutorialhtml.

    Google Scholar 

  31. A. V. Eletskii, A. N. Starostin, and M. D. Taran, Phys. Usp. 48, 281 (2005).

    Article  CAS  Google Scholar 

  32. D. L. Ripley and W. C. Gardner, J. Chem. Phys. 44, 2285 (1966).

    Article  CAS  Google Scholar 

  33. V. P. Balakhnin, Yu. M. Gershenzon, V. N. Kondrat’ev, and A. B. Nalbandyan, Dokl. Akad. Nauk SSSR 170, 1117 (1966).

    CAS  Google Scholar 

  34. F. E. Belles and T. A. Brabbs, in Proceedings of the 13th International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 1971), p. 165.

    Google Scholar 

  35. C. J. Jachimowski and W. M. Houghton, Combust. Flame 17, 25 (1971).

    Article  CAS  Google Scholar 

  36. V. V. Azatyan, E. N. Aleksandrov, and A. F. Troshin, Kinet. Katal. 16, 306 (1975).

    CAS  Google Scholar 

  37. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  38. G. Herzberg, Molecular Spectra and Molecular Structure, I. Diatomic Molecules (New York, 1939; Mir, Moscow, 1949).

    Google Scholar 

  39. B. P. Levitt, Physical Chemistry of Fast Reactions (Plenum, Oxford, 1973).

    Book  Google Scholar 

  40. I. Glassman, Combustion, 3rd ed. (Academic, San Diego, CA, 1996).

    Google Scholar 

  41. K. E. Lewis, D. M. Golden, and G. P. Smith, J. Am. Chem. Soc. 106, 3905 (1984).

    Article  CAS  Google Scholar 

  42. U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Kinet. Katal. 29, 942 (1988).

    CAS  Google Scholar 

  43. R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, CHEMKIN III, Tech. Report No. SAND96-8216 (Sandia Natl. Laboratories, Livermore, CA, 1996).

    Google Scholar 

  44. A. Burcat, Report No. TAE-867 (Technion-Israel Inst. Technol., Tel-Aviv, 2001). http://garfieldchemeltehu/ Burcat/burcathtml.

    Google Scholar 

  45. D. A. Masten, R. K. Hanson, and C. T. Bowman, J. Phys. Chem. 94, 7119 (1990).

    Article  CAS  Google Scholar 

  46. J. V. Michael, J. W. Sutherland, L. B. Harding, et al., in Proceedings of the 28th International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 2000), p. 1471.

    Google Scholar 

  47. J. T. Herbon, R. K. Hanson, D. M. Golden, and C. T. Bowman, in Proceedings of the 29th International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 2002), p. 1201.

    Google Scholar 

  48. H. Wang, S. J. Warner, M. A. Oehlschlaeger, et al., Combust. Flame 157, 1976 (2010). http://ignisuscedu/USC_Mech_IIhtml.

    Article  CAS  Google Scholar 

  49. D. Fernandez-Galisteo, A. L. Sanchez, A. Linan, and F. A. Williams, Combust. Theory Model. 13 4, 74 (2009). http://webengucsdedu/mae/groups/combustion/ mechanismhtml.

    Article  Google Scholar 

  50. Z. Hong, D. F. Davidson, and R. K. Hanson, Combust. Flame 158, 633 (2011).

    Article  CAS  Google Scholar 

  51. M. O’Conaire, H. J. Curran, J. M. Simmie, et al., Int. J. Chem. Kinet. 36, 603 (2004). https://www-plsllnl. gov/?url=science_and_technology-chemistry-combustion- c8c16_n_alkanes.

    Article  Google Scholar 

  52. M. P. Burke, Y. Ju, L. Frederick, et al., in Proceedings of the 49th AIAA Aerospace Sci. Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, Orlando, FL, 2011), Paper 2011-93.

    Google Scholar 

  53. M. W. Slack, Combust. Flame 28, 241 (1977).

    Article  CAS  Google Scholar 

  54. Y. Hidaka, K. Sato, Y. Henmi, et al., Combust. Flame 118, 340 (1999).

    Article  CAS  Google Scholar 

  55. E. L. Petersen, D. M. Kalitan, and M. J. A. Rickard, in Proceedings of the 3rd Joint Meeting (US Combust. Inst. Chicago, IL, 2003), paper C25/PL05.

    Google Scholar 

  56. E. L. Petersen, D. F. Davidson, M. Rohrig, and R. K. Hanson, in Proceedings of the 20th International Symposium on Shock Waves (Panther, Great Keppel Island, Australia, 1995), p. 941.

    Google Scholar 

  57. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).

    Article  CAS  Google Scholar 

  58. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., J. Phys. Chem. Ref. Data 21, 411 (1992).

    Article  CAS  Google Scholar 

  59. J. W. Sutherland, P. M. Patterson, and R. B. Klemm, in Proceedings of the 23rd International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 1991), p. 51.

    Google Scholar 

  60. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., J. Phys. Chem. Ref. Data 23, 847 (1994).

    Article  CAS  Google Scholar 

  61. J. Troe, J. Phys. Chem. A 109, 8320 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tereza.

Additional information

Original Russian Text © P.A. Vlasov, V.N. Smirnov, A.M. Tereza, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 6, pp. 35–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, P.A., Smirnov, V.N. & Tereza, A.M. Reactions of initiation of the autoignition of H2–O2 mixtures in shock waves. Russ. J. Phys. Chem. B 10, 456–468 (2016). https://doi.org/10.1134/S1990793116030283

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116030283

Keywords

Navigation