Skip to main content
Log in

Three-dimensional numerical simulation of the characteristics of a ramjet power plant with a continuous-detonation combustor in supersonic flight

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Multi-variant three-dimensional numerical simulations demonstrate the feasibility of the continuous- detonation process in an annular combustor of a ramjet power plant operating on hydrogen as fuel and air as oxidant in conditions of flight at a Mach number of M 0 = 5.0 and an altitude of 20 km. Conceptual schemes of an axisymmetric power plant, 400 mm in external diameter and 1.3 to 1.5 m in length, with a supersonic intake, divergent annular combustor, and outlet nozzle with a frusto-conical central body are proposed. Calculations of the characteristics of the internal and external flows, with consideration given to the finite rate of turbulent-molecular mixing of the fuel mixture components with each other and with the combustion products, as well as the finite rate of chemical reactions and the viscous interaction of the flow with the bounding surfaces, have shown that, in these flight conditions, the engine of such a power plant has the following performance characteristics: the thrust, 10.7 kN; specific thrust, 0.89 (kN s)/kg; specific impulse, 1210 s; and specific fuel⋅consumption 0.303 kg/(N h). In this case, the combustor can operate with one detonation wave traveling in the annular channel at an average velocity of 1695 m/s, which corresponds to a detonation wave rotation frequency of 1350 Hz. It is shown that, an operating combustor has regions with subsonic flow of detonation products, but the flow is supersonic throughout its outlet section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich, Zh. Tekh. Fiz. 10, 1453 (1940).

    Google Scholar 

  2. S. M. Frolov, A. E. Barykin, and A. A. Borisov, Khim. Fiz. 23 3, 17 (2004).

    CAS  Google Scholar 

  3. W. H. Heiser and D. T. Pratt, J. Propuls. Power 18, 68 (2002).

    Article  Google Scholar 

  4. V. K. Chvanov, S. M. Frolov, and E. L. Sternin, Tr. NPO Energomash, No. 29, 4 (2012).

    Google Scholar 

  5. S. A. Zhdan, Combust. Explos., Shock Waves 44, 690 (2008).

    Article  Google Scholar 

  6. S. A. Zhdan and A. I. Rybnikov, Combust. Explos., Shock Waves 50, 556 (2014).

    Article  Google Scholar 

  7. T. Fujiwara, M. Hishida, J. Kindracki, and P. Wolanski, Combust. Explos., Shock Waves 45, 603 (2009).

    Article  Google Scholar 

  8. S. Liu, W. Liu, L. Jiang, and Z. Lin, in Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems ICDERS, Leeds, UK, Aug. 2–7, 2015, No. 157.

    Google Scholar 

  9. C. Wang, W. Liu, S. Liu, L. Jiang, Z. Lin, in Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems ICDERS, Leeds, UK, Aug. 2–7, 2015, No. 154.

    Google Scholar 

  10. A. V. Dubrovskii, V. S. Ivanov, and S. M. Frolov, Russ. J. Phys. Chem. B 9, 104 (2015).

    Article  CAS  Google Scholar 

  11. S. M. Frolov, V. S. Aksenov, A. V. Dubrovskii, V. S. Ivanov, and I. O. Shamshin, Combust. Explos., Shock Waves 51, 232 (2015).

    Article  Google Scholar 

  12. S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov, Russ. J. Phys. Chem. B 6, 276 (2012).

    Article  CAS  Google Scholar 

  13. S. B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985).

    Article  Google Scholar 

  14. V. Ya. Basevich and S. M. Frolov, Russ. Chem. Rev. 76, 867 (2007).

    Article  CAS  Google Scholar 

  15. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Fiz. Goreniya Vzryva 42 4, 1 (2006).

    Google Scholar 

  16. S. M. Frolov, V. S. Aksenov, V. S. Ivanov, and I. O. Shamshin, Int. J. Hydrogen Energy 40, 1616 (2015).

    Article  CAS  Google Scholar 

  17. S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov, Russ. J. Phys. Chem. B 7, 35 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov.

Additional information

Original Russian Text © A.V. Dubrovskii, V.S. Ivanov, A.E. Zangiev, S.M. Frolov, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 6, pp. 49–63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, A.V., Ivanov, V.S., Zangiev, A.E. et al. Three-dimensional numerical simulation of the characteristics of a ramjet power plant with a continuous-detonation combustor in supersonic flight. Russ. J. Phys. Chem. B 10, 469–482 (2016). https://doi.org/10.1134/S1990793116030179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116030179

Keywords

Navigation