Skip to main content
Log in

Reactions C2H2 + OH and C2 + H2O: Ab initio study of the potential energy surfaces

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The stationary points of the potential energy surfaces for the reactions C2H2 + OH and C2 + H2O are calculated using density functional theory and the coupled cluster method. The relative energies and geometric parameters of the stable intermediates and transition states are in good agreement with the results of independent studies. In most cases, the relative energies differ from the earlier published values by no more than 3 kcal/mol, whereas the rotational constants, by 1–2%. The mechanism of the reaction CCOH2 → C2 + H2O is studied in detail. The possible sources of errors in the calculation methods are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere (Academic, San Diego, CA, 2000).

    Google Scholar 

  2. G. P. Smith, P. W. Fairchild, and D. R. Crosley, J. Chem. Phys. 81, 2667 (1984). doi: 10.1063/1.447976

    Article  CAS  Google Scholar 

  3. G. P. Smith, P. W. Fairchild, and D. R. Crosley, J. Chem. Phys. 82, 3473 (1985). doi: 10.1063/1.448987

    Article  Google Scholar 

  4. S. Hatakeyama, N. Washida, and H. Akimoto, J. Phys. Chem. 90, 173 (1986).doi: 10.1021/j100273a039

    Article  CAS  Google Scholar 

  5. D. Fulle, H. F. Hamann, H. Hippler, and C. P. Jänsch, Ber. Bunsen-Ges. Phys. Chem. 101, 1433 (1997). doi: 10.1002/bbpc.199700004

    Article  CAS  Google Scholar 

  6. R. I. Kaiser, Chem. Rev. 102, 1309 (2002). doi: 10.1021cr970004v

    Article  CAS  Google Scholar 

  7. L. E. Yeung, M. J. Pennino, A. M. Miller, and M. J. Elrod, J. Phys. Chem. A 109, 1879 (2005). doi: 10.1021/jp0454671

    Article  CAS  Google Scholar 

  8. J. A. Miller and C. F. Melius, Proc. Combust. Inst. 22, 1031 (1989).

    Article  Google Scholar 

  9. Yi-Hong Ding, Xiang Zhang, Ze-sheng Li, Xu-ri Huang, and Chia-chung Sun, J. Phys. Chem. A 105, 8206 (2001). doi: 10.1021/jp0045484

    Article  CAS  Google Scholar 

  10. S. Carl, Hue Minh Thi Nguyen, R. M. I. Elsamra, and J. Peeters, J. Chem. Phys. 122, 114307-1 (2005). doi:10.1063/1.1861887

  11. J. P. Senosiain, S. J. Klippenstein, and J. A. Miller, J. Phys. Chem. A 109, 6045 (2005). doi: 10.1021/jp050737g

    Article  CAS  Google Scholar 

  12. M. Dupuis, J. J. Wendoloski, and W. A. Lester, J. Chem. Phys. 76, 488 (1982). doi: 10.1063/1.442749

    Article  CAS  Google Scholar 

  13. E. S. Huyser, D. Feller, W. T. Borden, and E. R. Davidson, J. Am. Chem. Soc. 104, 2956 (1982). doi: 10.1021/ja00375a002

    Article  CAS  Google Scholar 

  14. G. Bouchoux, J. Chamot-Rooke, D. Leblanc, P. Mourgues, and M. Sablier, Chem. Phys. Chem 2, 235 (2001). doi:10.1002/1439-7641(20010417)

    CAS  Google Scholar 

  15. J. B. Davey, M. E. Greenslade, M. D. Marshall, M. I. Lester, and M. D. Wheeler, J. Chem. Phys. 121, 3009 (2004). doi: 10.1063/1.1768933

    Article  CAS  Google Scholar 

  16. C. W. Bauschlicher, J. Phys. Chem. 98, 2564 (1994). doi: 10.1021/j100061a010

    CAS  Google Scholar 

  17. O. Dolgounitcheva, V. Zakrzewski, and J. Ortiz, J. Phys. Chem. A 101, 1758 (1997). doi: 10.1021/jp962984d

    Article  CAS  Google Scholar 

  18. L. S. Alconcel, H. J. Deyerl, V. Zengin, and R. E. Continetti, J. Phys. Chem. A 103, 9190 (1999). doi: 10.1021/jp992126s

    Article  CAS  Google Scholar 

  19. S. Matsika and D. Yarkony, J. Chem. Phys. 117, 7198 (2002). doi: 10.1021/jp992126s

    Article  CAS  Google Scholar 

  20. A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 110, 7650 (1999). doi: 10.1063/1.478676

    Article  CAS  Google Scholar 

  21. D. Osborn, H. Choi, D. Mordaunt, et al., J. Chem. Phys. 106, 3049 (1997). doi: 10.1063/1.473419

    Article  CAS  Google Scholar 

  22. D. Mordaunt, D. Osborn, and D. Neumark, J. Chem. Phys. 108, 2448 (1998). doi: 10.1063/1.473419

    Article  CAS  Google Scholar 

  23. A. Peña-Gallego, E. Martínez-Núñez, and S. A. Vázquez, J. Chem. Phys. 110, 11323 (1999). doi: 10.1063/1.479073

    Article  Google Scholar 

  24. A. Galano, L. G. Ruiz-Suárez, and A. Vivier-Bunge, Theor. Chem. Account 121, 219 (2008). doi: 10.1007/ s00214-008-0467-y

    Article  CAS  Google Scholar 

  25. W. Mao, Q. Li, F. Kong, and M. Huang, Chem. Phys. Lett. 283, 114 (1998). doi: 10.1016/S0009-2614(97)01313-4

    Article  CAS  Google Scholar 

  26. C. Sosa and H. Schlegel, J. Am. Chem. Soc. 109, 4193 (1987).doi: 10.1016/S0009-2614(97)01313-4

    Article  CAS  Google Scholar 

  27. Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008).doi: 10.1021/ar70011a

    Article  CAS  Google Scholar 

  28. Y. Zhao and D. G. Truhlar, Theor. Chem. Account 120, 215 (2008). doi: 10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  29. M. D. Perry and L. M. Raff, J. Phys. Chem. 98, 4375 (1994). doi: 10.1021/j100067a027

    Article  CAS  Google Scholar 

  30. S. C. O’Brien, J. R. Heath, R. F. Curl, and R. E. Smalley, J. Chem. Phys. 88, 220 (1988). doi: 10.1063/1.454640

    Article  Google Scholar 

  31. J. W. Weltner and R. van Zee, Chem. Rev. 89, 1713 (1989). doi: 10.1021/cr00098a005

    Article  CAS  Google Scholar 

  32. Jia-Hai Wang, Ke-Li Han, Guo-Zhong He, Jhuangje Li, and V. R. Morris, J. Phys. Chem. A 107, 9825 (2003). doi: 10.1021/jp0345912

    Article  CAS  Google Scholar 

  33. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972). doi: 10.1063/1.1677527

    Article  CAS  Google Scholar 

  34. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer, J. Comput. Chem. 4, 294 (1983). doi: 10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  35. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta (Berl.) 28, 213 (1973).

    Article  CAS  Google Scholar 

  36. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989). doi: 10.1063/1.456153

    Article  CAS  Google Scholar 

  37. R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992). doi: 10.1063/1.462569

    Article  CAS  Google Scholar 

  38. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993). doi: 10.1002/ jcc.540141112

    Article  CAS  Google Scholar 

  39. M. S. Gordon and M. W. Schmidt, in Theory and Applications of Computational Chemistry: The First Forty Years, Ed. by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), p. 1167.

  40. H.-J. Werner, P. J. Knowles, R. Lindh, et al., MOLPRO, Vers. 2009.1, A Package of ab initio Programs. http://www.molpro.net

  41. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979).

    Book  Google Scholar 

  42. A. van Orden and R. J. Saykally, Chem. Rev. 98, 2313 (1998). doi: 10.1021/cr970086n

    Article  Google Scholar 

  43. C. W. Bauschlieher and S. R. Langhoff, J. Chem. Phys. 87, 2919 (1987). doi: 10.1063/1.453080

    Article  Google Scholar 

  44. J. D. Watts and R. J. Bartlett, J. Chem. Phys. 96, 6073 (1992). doi: 10.1063/1.462649

    Article  CAS  Google Scholar 

  45. M. L. Abrams and C. D. Sherrill, J. Chem. Phys. 121, 9211 (2004). doi: 10.1063/1.1804498

    Article  CAS  Google Scholar 

  46. C. D. Sherril and P. Piecuch, J. Chem. Phys. 122, 124104-1 (2005). doi: 10.1063/1.1867379

  47. R. K. Chaudhuri and K. F. Freed, J. Chem. Phys. 122, 154310–1 (2005). doi: 10.1063/1.1879812

    Article  Google Scholar 

  48. A. D. Pradhan, H. Partridge, and C. W. Bauschlicher, Jr., J. Chem. Phys. 101, 3857 (1994). doi: 10.1063/1.467503

    Article  CAS  Google Scholar 

  49. T. J. Lee and P. R. Taylor, Int. J. Quantum Chem. 36, 199 (1989). doi: 10.1002/qua.560360824

    Article  Google Scholar 

  50. T. J. Lee, A. P. Rendell, and P. R. Taylor, J. Phys. Chem. 94, 5463 (1990). doi: 10.1021/j100377a008

    Article  CAS  Google Scholar 

  51. T. J. Lee, Preprint, NASA Technical Reports Server (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Adamson.

Additional information

Original Russian Text © S.O. Adamson, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 1, pp. 76–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamson, S.O. Reactions C2H2 + OH and C2 + H2O: Ab initio study of the potential energy surfaces. Russ. J. Phys. Chem. B 10, 143–152 (2016). https://doi.org/10.1134/S1990793116010012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116010012

Keywords

Navigation