Skip to main content
Log in

Influence of small-molecule ligands and their complexes on lysozyme properties

  • Chemical Physics of Biological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The structure of complexes of various alkylhydroxybenzenes, such as 4-hexylresorcinol, 5-methyl-resorcinol, and tyrosol, is studied using experimental and theoretical methods. The influence of 4-hexyl-resorcinol and 5-methylresorcinol in a wide range of concentrations on the structure, equilibrium fluctuations, and functional activity of a water-soluble enzyme lysozyme is examined. A spatial model for the interaction of ligands and clusters thereof with the protein and the aqueous medium is constructed. A possible mechanism of the stabilization of the protein tertiary structure by the aforementioned molecules is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Welch and C. R. Brown, Cell Stress Chaperones 1, 109 (1996).

    Article  CAS  Google Scholar 

  2. J. Tatzelt, S. B. Prusiner, and W. J. Welch, EMBO J. 15, 6363 (1996).

    CAS  Google Scholar 

  3. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics, Course of Lectures, 2nd ed. (Universitet, Moscow, 2002), p. 374 [in Russian].

    Google Scholar 

  4. A. Smith, Nature 426(6968), 883 (2003).

    Article  CAS  Google Scholar 

  5. C. M. Dobson, Nature 426(6968), 884 (2003).

    Article  CAS  Google Scholar 

  6. F. E. Cohen and J. W. Kelly, Nature 426, 905 (2003).

    Article  CAS  Google Scholar 

  7. J. P. Morello, U. E. Petajea-Repo, D. G. Bichet, and M. Bouvier, TIPS 21, 466 (2000).

    CAS  Google Scholar 

  8. A. Kozubek and J. H. P. Tyman, Chem. Rev. 99, 1 (1999).

    Article  CAS  Google Scholar 

  9. PubChem, Data Base of Biologic Activity of Small Molecules. http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=10436/

  10. G. I. El-Registan, A. L. Mulyukin, Yu. A. Nikolaev, et al., Microbiology 75, 380 (2006).

    Article  CAS  Google Scholar 

  11. Yu. F. Krupyanskii, E. G. Abdulnasyrov, N. G. Loiko, et al., Russ. J. Phys. Chem. B 31, 301 (2012).

    Article  Google Scholar 

  12. Yu. F. Krupyanskii, P. P. Noks, N. G. Loiko, et al., Biophysics 56, 8 (2011).

    Article  Google Scholar 

  13. K. B. Tereshkina and Yu. F. Krupyanskii, in Proceedings of the 20th Conference on Mathematics. Computer. Education (OIYaI, Dubna, 2013), p. 37.

    Google Scholar 

  14. A. I. Kolpakov, O. N. Il’inskaya, M. M. Bespalov, et al., Microbiology 69, 180 (2000).

    Article  CAS  Google Scholar 

  15. I. Yu. Stepanenko, M. L. Shishkina, E. I. Martirosova, et al., in Proceedings the All-Russia Scientific-Technical Conference and Exhibition on High Effective Food Technologies, Methods and Means of their Realization (MGUPP, Moscow, 2003), p. 195.

    Google Scholar 

  16. Yu. A. Nikolaev, N. G. Loiko, I. Yu. Stepanenko, et al., Prikl. Biokhim. Mikrobiol. 44(2), 159 (2008).

    Google Scholar 

  17. Yu. F. Krupyanskii, G. V. Eshchenko, S. V. Esin, et al., Biophysics 50, 865 (2005).

    Google Scholar 

  18. Yu. F. Krupyanskii, M. G. Mikhailyuk, S. V. Esin, et al., Biophysics 51, 8 (2006).

    Article  Google Scholar 

  19. A. Guinier, X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies (Dunod, Paris, 1956; Freeman, New York, 1963; Fizmatgiz, Moscow, 1961).

    Google Scholar 

  20. R. W. James, The Optical Principle of the Diffraction of X-Rays (Bell, London, 1950).

    Google Scholar 

  21. A. I. Kitaigorodskii, X-Ray-Structural Analysis of Fine-Crystalline and Amorphous Bodies (Gostekhteoretizdat, Moscow, 1953) [in Russian].

    Google Scholar 

  22. M. Kakudo and N. Kasai, X-Ray Diffraction by Polymers (Elsevier, Amsterdam, London, New York, 1972).

    Google Scholar 

  23. B. E. Warren and N. S. Gingrich, Phys. Rev. 46, 368 (1934).

    Article  CAS  Google Scholar 

  24. V. V. Volkov, in Proceedings of the 5th National Conference on Application of X-Ray and Synchrotron Radiation, Neutrons and Electrons for Material Research RSNE-2005 (IK RAN, Moscow, 2005), p. 51.

    Google Scholar 

  25. D. I. Svergun and L. A. Feigin, Small-Angle X-ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  26. R. L. Messbauer, Khim. Fiz. 1, 1297 (1982).

    Google Scholar 

  27. Yu. F. Krupyanskii, F. Parak, V. I. Goldanskii, et al., Z. Naturforch. 37, 57 (1982).

    Google Scholar 

  28. V. I. Goldanskii and Yu. F. Krupyanskii, Quart. Rev. Biophys. 22, 39 (1989).

    Article  CAS  Google Scholar 

  29. Yu. F. Krupyanskii, V. I. Goldanskii, G. U. Nienhaus, and F. Parak, Hyperfine Interact. 53, 59 (1990).

    Article  CAS  Google Scholar 

  30. Yu. F. Krupyanskii, K. V. Shaitan, I. V. Kurinov, et al., Biofizika 33, 401 (1988).

    CAS  Google Scholar 

  31. Yu. F. Krupyanskii and V. I. Goldanskii, in Proceedings of the International School of Physics “Enrico Fermi” (IOS Press, Amsterdam, 2001), p. 25.

    Google Scholar 

  32. Yu. F. Krupyanskii, P. P. Noks, N. G. Loiko, et al., Biophysics 56, 8 (2011).

    Article  Google Scholar 

  33. J. A. McCammon, Rep. Prog. Phys. 41, 1 (1984).

    Article  Google Scholar 

  34. M. Karplus and G. A. Petsko, Nature 347, 631 (1990).

    Article  CAS  Google Scholar 

  35. K. V. Shaitan and K. B. Tereshkina, Molecular Dynamics of Proteins and Peptides (Oikos, Moscow, 2004) [in Russian].

    Google Scholar 

  36. B. Hess, C. Kutzner, D. van der Spoel, et al., J. Chem. Theory Comput. 4, 435 (2008).

    Article  CAS  Google Scholar 

  37. A. A. Granovsky, Firefly Vers. 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html

  38. Q. Zou, B. J. Bennion, V. Daggett, and K. P. Murphy, J. Am. Chem. Soc. 124, 1192 (2002).

    Article  CAS  Google Scholar 

  39. P. J. Artymiuk, C. C. F. Blake, D. W. Rice, and K. S. Wilson, Acta Crystallogr. 38, 778 (1982).

    Article  Google Scholar 

  40. S. E. Boyce, D. L. Mobley, G. J. Rocklin, et al., J. Mol. Biol. 394, 747 (2009).

    Article  CAS  Google Scholar 

  41. A. V. Geliev, Kh. D. Do, B. V. Egorov, et al., Russ. J. Phys. Chem. B 30, 124 (2011).

    Article  Google Scholar 

  42. A. G. Murzin and A. V. Finkelstein, J. Mol. Biol. 204, 749 (1988).

    Article  CAS  Google Scholar 

  43. I. G. Plashchina, I. L. Zhuravleva, E. I. Martirosova, et al., Biotechnology, Biodegradation, Water and Foodstuff (Nova Science, New York, 2009), p. 45.

    Google Scholar 

  44. A. Mukherjee, P. Grobelny, T. S. Thakur, and G. R. Desiraju, Cryst. Growth Des. 11, 2637 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Krupyanskii.

Additional information

Original Russian Text © K.B. Tereshkina, A.S. Stepanov, D.O. Sinitsyn, Yu.F. Krupyanskii, 2014, published in Khimicheskaya Fizika, 2014, Vol. 33, No. 7, pp. 64–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshkina, K.B., Stepanov, A.S., Sinitsyn, D.O. et al. Influence of small-molecule ligands and their complexes on lysozyme properties. Russ. J. Phys. Chem. B 8, 534–542 (2014). https://doi.org/10.1134/S1990793114040137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793114040137

Keywords

Navigation