Skip to main content
Log in

In Silico Modeling of Isoniazid-Steroid Conjugates Interactions with Mycobacterial Cytochromes P450 and Their Bioconversion in Vitro by the Cells

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Molecular docking of four isoniazid hydrazones including steroids dehydroepiandrosterone, pregnenolone, 16α,17α-epoxypregnenolone, and cholestenone (IDHEA, IPRE, IEP5, ICHN), to mycobacterial cytochromes P450 was performed. The in silico study has shown than these hydrazones can be effectively bound to CYP121, CYP124, CYP125, CYP126A1, CYP130, and CYP51 with the calculated binding energy values ranged from –9 kcal/mol to –12 kcal/mol. Calculations also demonstrated that passive lipid bilayer permeability was higher than that of with isoniazid. In vitro IDHEA, IPRE, IEPR were found to undergo bioconversion into their 3-keto-4-en derivatives. This suggests their ability to penetrate into M. tuberculosis H37Rv cells. The results of this study are important in the context of understanding of binding specificity of synthetic steroid derivatives to mycobacterial CYPs and indicate the possibility of using these steroid compounds as new ligands for these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. MacNeil, A., Glaziou, P., Sismanidis, C., Date, A., Maloney, S., and Floyd, K., MMWR Morb. Mortal W-kly. Rep., 2020, vol. 69, pp. 281–285. https://doi.org/10.15585/mmwr.mm6911a2

    Article  Google Scholar 

  2. Cui, Z.J., Zhang, W.T., Zhu, Q., Zhang, Q.Y., and Zhang, H.Y., Protein Pept. Lett., 2020.https://doi.org/10.2174/0929866527666200313113157

  3. Reis, W.J., Bozzi, Í.A.O., Ribeiro, M.F., Halicki, P.C.B., Ferreira, L.A., Almeida da Silva, P.E., Ramos, D.F., de Simone, C.A., and da Silva Júnior, E.N., Bioorg. Med. Chem., 2019, vol. 27, pp. 4143–4150. https://doi.org/10.1016/j.bmc.2019.07.045

    Article  CAS  PubMed  Google Scholar 

  4. Vosátka, R., Krátký, M., Švarcová, M., Janoušek, J., Stolaříková, J., Madacki, J., Huszár, S., Mikušová, K., Korduláková, J., Trejtnar, F., and Vinšová, J., Eur. J. Med. Chem., 2018, vol. 151, pp. 824–835. https://doi.org/10.1016/j.ejmech.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  5. Bonds, A.C. and Sampson, N.S., Curr. Opin. Chem. -Biol., 2018, vol. 44, pp. 39–46. https://doi.org/10.1016/j.cbpa.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frank, D.J., Zhao, Y., Wong, S.H., Basudhar, D., de Voss, J.J., and Ortiz de Montellano, P.R., J. Biol. Chem., 2016, vol. 291, pp. 7325–7333. https://doi.org/10.1074/jbc.M115.708172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ortega Ugalde, S., Boot, M., Commandeur, J.N.M., Jennings, P., Bitter, W., and Vos, J.C., Appl. Microbiol. Biotechnol., 2019, vol. 9, pp. 3597–3614. https://doi.org/10.1007/s00253-019-09697-z

    Article  CAS  Google Scholar 

  8. Brzezinska, M., Szulc, I., Brzostek, A., Klink, M., Kielbik, M., Sulowska, Z., Pawelczyk, J., and Dziadek, J., BMC Microbiol., 2013, vol. 13, 43. https://doi.org/10.1186/1471-2180-13-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu, Y., van der Geize, R., Besra, G.S., Gurcha, S.S., Liu, A., Rohde, M., Singh, M., and Coates, A., Mol. Microbiol., 2010, vol. 75, pp. 107–121. https://doi.org/10.1111/j.1365-2958.2009.06957.x

    Article  CAS  PubMed  Google Scholar 

  10. Poroikov, V.V., Biomeditsinskaya Khimiya, 2020, vol. 66, no. 1, pp. 30–41. https://doi.org/10.18097/PBMC20206601030

    Article  CAS  Google Scholar 

  11. Ershov, P.V., Yablokov, E.O., Mezentsev, Y.V., Kalushskiy, L.A., Florinskaya, A.V., Veselovsky, A.V., Gnedenko, O.V., Gilep, A.A., Usanov, S.A., Medvedev, A.E., and Ivanov, A.S., Biomeditsinskaya Khimiya, 2017, vol. 63, no. 2, pp. 170–175. https://doi.org/10.18097/PBMC20176302170

    Article  CAS  Google Scholar 

  12. Panada, J.U., Faletrov, Y.V., Frolova, N.S., and Shkumatov, V.M., Biomeditsinskaya Khimiya, 2019, vol. 65, no. 4, pp. 324–330. https://doi.org/10.18097/PBMC20196504324

    Article  CAS  Google Scholar 

  13. Trott, O. and Olson, A.J., J. Comput. Chem., 2010, vol. 31, pp. 455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lomize, A.L., Hage, J.M., Schnitzer, K., Golobokov, K., LaFaive, M.B., Forsyth, A.C., and Pogozheva, I.D., J. Chem. Inf. Model., 2019, vol. 59, pp. 3094–3099. https://doi.org/10.1021/acs.jcim.9b00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lavrynenko, O., Nedielkov, R., Möller, H.M., and Shevchenko, A., J. Lipid Res., 2013, vol. 54, pp. 2265–2272. https://doi.org/10.1194/jlr.D035949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McLean, K.J., Lafite, P., Levy, C., Cheesman, M.R., Mast, N., Pikuleva, I.A., Leys, D., and Munro, A., J. Biol. Chem., 2009, vol. 284, pp. 35524–35533. https://doi.org/10.1074/jbc.M109.032706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ortega Ugalde, S., Boot, M., Commandeur, J.N.M., Jennings, P., Bitter, W., and Vos, J.C., Appl. Microbiol. Biotechnol., 2019, vol. 9, pp. 3597–3614. https://doi.org/10.1007/s00253-019-09697-z

    Article  CAS  Google Scholar 

  18. Sampiron, E.G., Costacurta, G.F., Baldin, V.P., Almeida, A.L., Ieque, A.L., Santos, N.C., Alves-Olher, V.G., Vandresen, F., Gimenes, A.C., Siqueira, V.L., Caleffi-Ferracioli, K.R., Cardoso, R.F., and Scodro, R.B., Future Microbiol., 2019, vol. 14, pp. 981–994. https://doi.org/10.2217/fmb-2019-0040

    Article  CAS  PubMed  Google Scholar 

  19. Merlani, M.I., Kemertelidze, E.P., Papadopoulos, K., and Men’shova, N.I., Rus. J. Bioorg. Chem., 2004, vol. 30, pp. 497–501. https://doi.org/10.1023/B:RUBI.0000043795.25417.60

    Article  CAS  Google Scholar 

  20. Guengerich, F.P. and Munro, A.W., J. Biol. Chem., 2013, vol. 288, pp. 17065–17073. https://doi.org/10.1074/jbc.R113.462275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong, X. and Hopfinger, A.J., Biomacromolecules, 2004, vol. 5, pp. 1066–1077. https://doi.org/10.1021/bm03145155

    Article  CAS  PubMed  Google Scholar 

  22. Sinha, R., Singh, P., Saini, N.K., et al., Tuberculosis (Edinb.), 2018, vol. 109, pp. 52–60. https://doi.org/10.1016/j.tube.2018.01.004

    Article  CAS  Google Scholar 

  23. Faletrov, Y., Brzostek, A., Plocinska, R., Dziadek, J., Rudaya, E., Edimecheva, I., and Shkumatov, V., Steroids, 2017, vol. 117, pp. 29–37. https://doi.org/10.1016/j.steroids.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X., Dubnau, E., Smith, I., and Sampson, N.S., Biochemistry, 2007, vol. 46, pp. 9058–9067. https://doi.org/10.1021/bi700688x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Department of Radiation Chemistry and Chemical-Pharmaceutical Technologies and the Department of Organic Chemistry (Faculty of Chemistry, Belarusian State University) for the opportunity to perform mass spectrometric and IR spectroscopic analysis.

Funding

This work was supported by the Belarusian Foundation for Basic Research (project no. B18MS-026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shkumatov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain a description of the research performed by the authors with the participation of humans or the use of animals as research objects.

CONFLICT OF INTEREST

K.A. Gilep and A.S. Falchevskaya participated in the synthesis of the studied hydrazones and testing the interaction with CYP125 as a part of their graduation theses at the Faculty of Chemistry of BSU in 2019 under supervision by V.M. Shkumatov and Ya.V. Faletrov, respectively. The authors are grateful to Dr. A.A. Gilep for constant help in isolation of a purified mycobacterial CYP125 preparation. Other authors postulate the absence of potential conflicts associated with the publication of this material.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faletrov, Y.V., Gilep, K.A., Falchevskaya, A.S. et al. In Silico Modeling of Isoniazid-Steroid Conjugates Interactions with Mycobacterial Cytochromes P450 and Their Bioconversion in Vitro by the Cells. Biochem. Moscow Suppl. Ser. B 15, 111–118 (2021). https://doi.org/10.1134/S1990750821020037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750821020037

Keywords:

Navigation