Skip to main content
Log in

Chlorine e6 in Phospholipid Nanoparticles with Specific Targeting and Penetrating Peptides as Prospective Composition for Photodynamic Therapy of Malignant Neoplasms

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Cytotoxic and photoinduced activity of chlorine e6 (Ce6) in phospholipid nanoparticles containing specific tumor targeting and cell-penetrating peptides was studied in vitro using human fibrosarcoma cells НТ-1080. It was shown, that addition of the cell-penetrating heptaarginine peptide (R7) alone or in combination with the peptide containing specific targeting motif NGR (Asn-Gly-Arg) resulted in a 3-fold increase of Ce6 photoinduced activity as compared with that in nanoparticles without peptides (the IC50 values were 0.7 µg/mL and 2.1 µg/mL, respectively). A weak effect of NGR alone (less than 20%; IC50 1.7 µg/mL) and the lack of its effect in addition to R7 (IC50 0.7 µg/mL) suggest a greater importance of Ce6 penetration into cells rather than NGR-mediated targeting. The effect of inclusion of both peptides on the total cytotoxicity of Ce6 was minimal (10−16 times less than on the specific photoinduced activity). The results obtained in this study together with earlier shown effects on improvement of the pharmacokinetics of Ce6 in vivo after its inclusion into phospholipid nanoparticles indicate the prospects of using the obtained phospholipid nanoparticles system for photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yakubovskaya, R.I., Morozova, N.B., Pankratov, A.A., Kazachkina, N.I., Plyutinskaya, A.D., Karmakova, T.A., Andreeva, T.N., Venediktova, Yu.B., Plotnikova, E.A., Nemtsova, E.R., Sokolov, V.V., Filonenko, E.V., Chissov, V.I., Kogan, B.Ya., Butenin, A.V., Feofanov, A.V., and Strakhovskaya, M.G., Russ. J. General Chem., 2015, vol. 85, no. 1, pp. 217−239. https://doi.org/10.1134/S1070363215010405

    Article  CAS  Google Scholar 

  2. Moghissi, K., Dixon, K., and Gibbins, S., Surg. J. (NY), 2015, vol. 1, no. 1, pp. 1–15. https://doi.org/10.1055/s-0035-1565246

    Article  Google Scholar 

  3. Machinskaya, E.A. and Ivanova-Radkevich V.I., Fotodinamicheskaya Terapiya i Fotodiagnostika, 2013, vol. 2, no. 4, pp. 28−32.

    Google Scholar 

  4. Li, M., Du, C., Guo, N., Teng, Y., Meng, X., Sun, H., Li, S., Yu, P., and Galons, H., Eur. J. Med. Chem., 2019, vol. 164, pp. 640−653. https://doi.org/10.1016/j.ejmech.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  5. Medvedeva, N.V., Prozorovskiy, V.N., Ignatov, D.V., Druzilovskaya, O.S., Kudinov, V.A., Kasatkina, E.O., Tikhonova, E.G., and Ipatova, O.M., Biomed. Khim., 2015, vol. 61, no. 2, pp. 219−230. https://doi.org/10.18097/PBMC20156102219

    Article  CAS  PubMed  Google Scholar 

  6. Kostryukova, L.V., Prozorovskiy, V.N., Medvedeva, N.V., and Ipatova, O.M., FEBS Open Bio., 2018, vol. 8, no. 2, pp. 201−210. https://doi.org/10.1002/2211-5463.12359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daeihamed, M., Dadashzadeh, S., Haeri, A., and Akhlaghi, M.F., Curr. Drug Deliv., 2017, vol. 14, no. 2, pp. 289−303. https://doi.org/10.2174/1567201813666160115125756

    Article  CAS  PubMed  Google Scholar 

  8. Kloesch, B., Gober, L., Loebsch, S., Vcelar, B., Helson, L., and Steiner, G., In Vivo, 2016, vol. 30, no. 4, pp. 413−419.

    CAS  PubMed  Google Scholar 

  9. Tolkacheva, E.V. and Oborotova, E.A. Rossiyskiy Bioterapevticheskiy Zhurnal, 2006, vol. 5, no. 1, pp. 54−61.

    Google Scholar 

  10. Prozorovskiy, V.N., Torkhovskaya, T.I., Kostryukova, L.V., and Ipatova, O.M., Russian Journal of Biopharmaceuticals, 2018, vol. 10, no. 4, pp. 3−18.

    Google Scholar 

  11. Raucher, D., Curr. Opin. Pharmacol., 2019, vol. 47, pp. 14−19. https://doi.org/10.1016/j.coph.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  12. Ma, J., Zhang, D., Ying, X., Zhao, Y., He, C., Zhu, Q., and Han, S., Curr. Cancer Drug Targets, 2015, vol. 15, no. 6, pp. 533–541.

    Article  CAS  Google Scholar 

  13. Ramsey, J.D. and Flynn, N.H., Pharmacol. Ther., 2015, vol. 154, pp. 78−86. https://doi.org/10.1016/j.pharmthera.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  14. Futaki, S., Biopolymers, 2006, vol. 84, no. 3, pp. 241−249.

    Article  CAS  Google Scholar 

  15. Chen, J.X., Wang, H.Y., Li, C., Han, K., Zhang, X.Z., and Zhuo, R.X., Biomaterials, 2011, vol. 32, vol. 6, pp. 1678−1684. https://doi.org/10.1016/j.biomaterials.2010.10.047

  16. Kostryukova, L.V., Korotkevich, E.I., Morozevich, G.E., Kolesanova, E.F., Mel’nikova, M.V., Filatova, Y.V., Torkhovskaya, T.I., Prozorovskii, V.N., Tikhonova, E.G., and Ipatova, O.M., Bull. Exp. Biol. Med., 2019, vol. 167, no. 3, pp. 347−350. https://doi.org/10.1007/s10517-019-04524-x

    Article  CAS  PubMed  Google Scholar 

  17. Prozorovskiy, V.N., Kostryukova, L.V., Korotkevich, E.I., Torkhovskaya, T.I., Morozevich, G.E., Tikhonova, E.G., and Ipatova, O.M., Biomedical Chemistry:Research and Methods, 2018, vol. 1, no. 4, e00063.

    Google Scholar 

  18. Yakubovskaya, R.I., Kazachkina, N.I., Karmakova, T.A., Morozova, N.B., Pankratov, A.A., Plyutinskaya, A.D., Feofanov, A.V., Chissov, V.I., Zebrev, A.I., and Tikhomirova, A.V., Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvennykh sredstv (Guide to Preclinical Drug Research), Mironov A.N. et al., Eds., Moscow : Grif and Co., 2012, pp. 655−669.

    Google Scholar 

  19. Sheldon, K., Liu, D., Ferguson, J., and Gariépy, J., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 6, pp. 2056−2060.

    Article  CAS  Google Scholar 

  20. Zavadova, Z. and Zavada, J., Oncol. Rep., 2005, vol. 13, no. 5, pp. 977−982.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Professor E.F. Kolesanova and her colleagues at the Laboratory of Peptide Engineering (Institute of Biomedical Chemistry), for providing heptaarginine (R7) the the Senior Researcher of the Laboratory of Protein Biosynthesis, Dr G.E. Morozevich for her help in working with cell cultures.

Funding

This work was carried out in the framework of the Program of fundamental scientific research of state academies of sciences for 2013−2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kostryukova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans or using animals as objects.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostryukova, L.V., Plyutinskaya, A.D., Pankratov, A.A. et al. Chlorine e6 in Phospholipid Nanoparticles with Specific Targeting and Penetrating Peptides as Prospective Composition for Photodynamic Therapy of Malignant Neoplasms. Biochem. Moscow Suppl. Ser. B 14, 174–179 (2020). https://doi.org/10.1134/S1990750820020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750820020080

Keywords:

Navigation