Skip to main content
Log in

Allele polymorphism analysis of hemostasis and folate metabolism genes by real-time microchip PCR

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Genetic diagnostics is widely used for detection of risk factors of hereditary thrombophilias caused by molecular defects in the coagulation system. The hereditary thrombophilias are frequently associated with higher incidences of point mutations in hemostasis (F2 20210G>A, F5 1691G>A) and folate metabolism (MTHFR 677C>T, MTHFR 1298A>C) genes. Combinations of gene abnormalities in F2 and/or MTHFR with Leiden mutation (F5 1691G>A) significantly increase risk of thrombosis. Thus, simultaneous analysis of allele polymorphism of these genes is of clinical importance. This study has demonstrated high efficiency of microchip-based multiplex real time PCR for analysis of allele specific polymorphism in hemostasis and folate metabolism genes. Using this test it is possible to analyze polymorphism of the three genes (four point mutations) in a short time; it requires a minimal quantity of DNA template and PCR reagents including DNA polymerase, and thus can be recommended for clinical laboratory diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Komarov, A.L., Shakhmatova, O.O., Rebrikov, D.V., Trofimov, D.Yu., Kotkina, T.I., and Ilyushchenko, T.A., Ratsional’naya Farmakoterapiya v Kardiologii (Rational Pharmacotherapy in Cardiology), 2011, vol. 7, pp. 409–425.

    Google Scholar 

  2. Makatsariya, A.D. and Bitsadze, V.O., Trombofilii i protivotromboticheskaya terapiya v akusherskoi praktike (Thrombophilias and Antithrombotic Therapy in Obstetrical Practice), Moscow: Triada-X, 2003.

    Google Scholar 

  3. Navolotskii, D.V., Perchik, A.V., Mark’yanov, I.A., Ganeev, A.A., and Slyadnev, M.N., Prikl. Biokhim. Mikrobiol., 2011, vol. 47, pp. 241–248.

    CAS  Google Scholar 

  4. Lane, D.A. and Grant, P.J., Blood, 2000, vol. 95, pp. 1517–1532.

    CAS  Google Scholar 

  5. Van de Water, N.S., French, J.K., Lund, M., Hyde, T.A., White, H.D., and Browett, P.J., J. Am. Coll. Cardiol., 2000, vol. 36, pp. 717–722.

    Article  Google Scholar 

  6. Ridker, P.M., Miletich, J.P., Buring, J.E., Ariyo, A.A., Price, D.T., Manson, J.E., and Hill, J.A., Ann. Intern. Med., 1998, vol. 128, pp. 1000–1003.

    Article  CAS  Google Scholar 

  7. Kluijtmans, L.A., van den Heuvel, L.P., Boers, G.H., Frosst, P., Stevens, E.M., van Oost, B.A., den Heijer, M., Trijbels, F.J., Rozen, R., and Blom, H.J., Am. J. Hum. Genet., 1996, vol. 58, pp. 35–41.

    CAS  Google Scholar 

  8. Grandone, E., Margaglione, M., Colaizzo, D., D’Andrea, G., Cappucci, G., Brancaccio, V., and Di Minno, G., Am. J. Obstet. Gynecol., 1998, vol. 179, pp. 1324–1328.

    Article  CAS  Google Scholar 

  9. Lotta, L.A., Wang, M., Yu, J., and Passamonti, S.M., BMC Med. Genomics, 2012, vol. 5. doi 10.1186/1755-8794-5-7

  10. Maggio, A., Giambona, A., Cai, S.P., Wall, J., Kan, Y.W., and Chehab, F.F., Blood, 1993, vol. 81, pp. 239–242.

    CAS  Google Scholar 

  11. Wang, J., Lin, M., Crenshaw, A., Hutchinson, A., Hicks, B., and Yeager, M., BMC Genomics, 2009, vol. 10. doi 10.1186/1471-2164-10-561

  12. Edwards, K.J., in Real-Time PCR: An Essential Guide, Edwards, K., Logan, J., and Saunders, N., Eds., Norfolk: Horizon Bioscience, 2004, pp. 71–83.

  13. Bauduer, F. and Lacombe, D., Mol. Genet. Metab., 2005, vol. 86, pp. 91–99.

    Article  CAS  Google Scholar 

  14. Mansilha, A., Araújo, F., Severo, M., Sampaio, S.M., Toledo, T., and Albuquerque, R., Phlebology, 2006, vol. 21, pp. 24–27.

    Article  Google Scholar 

  15. Gibson, C.S., MacLennan, A.H., Hague, W.M., Haan, E.A., Priest, K., Chan, A., Dekker, G. A., and Goldwater, P.N., Am. J. Obstetr. Gynecol., 2005, vol. 193, pp. 1437–1443.

    Google Scholar 

  16. Seipp, M.T., Pattison, D., Durtschi, J.D., Jama, M., Voelkerding, K.V., and Wittwer, C.T., Clin. Chem., 2008, vol. 54, pp. 108–115.

    Article  CAS  Google Scholar 

  17. Montgomery, J., Wittwer, C.T., Kent, J.O., and Zhou, L., Clin. Chem., 2007, vol. 53, pp. 1891–1898.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Bogdanov.

Additional information

Original Russian Text © K.V. Bogdanov, M.M. Nikitin, M.N. Slyadnev, 2016, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, K.V., Nikitin, M.M. & Slyadnev, M.N. Allele polymorphism analysis of hemostasis and folate metabolism genes by real-time microchip PCR. Biochem. Moscow Suppl. Ser. B 10, 152–157 (2016). https://doi.org/10.1134/S1990750816020025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750816020025

Keywords

Navigation