Skip to main content
Log in

Tumor necrosis factor-alpha is a potential target for the neuroprotector Dimebon

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Since 1983, Dimebon (Dimebolin) is used clinically in Russia as an antihistamine drug. Recent interest in Dimebolin is associated with its therapeutic effect in patients with Alzheimer’s disease. Animal studies have shown that Dimebon activity is realized via multiple mechanisms. Our experiments performed on the fibroblast cell culture L929 and C57Bl mice have been shown that Dimebon may block cytotoxic signals induced by the proinflammatory cytokines, tumor necrosis factor α (TNFα). Dimebon (10 μg/mL) protected mouse fibroblast cells L929 against toxic action of TNFα. Pretreatment of mice with Dimebon prevented development of changes in molecular species of sphingomyelins and galactosylceramides induced by a single dose administration of TNAα. Dimebon itself did not induce changes in sphingolipids of the investigated brain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matveeva, I.A., Farmakol. Toksikol., 1983, vol. 46, pp. 27–29.

    CAS  Google Scholar 

  2. Bachurin, S., Bukatina, E., Lermontova, N., Tkachenko, S., Afanasiev, A., Grigoriev, V., Grigorieva, I., Ivanov, Y., Sablin, S., and Zefirov, N., Ann. N.Y. Acad. Sci., 2001, vol. 939, pp. 425–435.

    Article  CAS  Google Scholar 

  3. Doody, R.S., Gavrilova, S.I., Sano, M., Thomas, R.G., Aisen, P.S., Bachurin, S.O., Seely, L., and Hung, D., Lancet, 2008, vol. 372, pp. 207–215.

    Article  CAS  Google Scholar 

  4. Ustyugov, A.A., Shelkovnikova, T.A., Kokhan, V.S., Khritankova, I.V., Peters, O., Buchman, V.L., Bachurin, S.O., and Ninkina, N.N., Byul. Eksper. Biol. Med., 2011, vol. 152, pp. 675–678.

    Google Scholar 

  5. Khritankova, I.V., Kukharskii, M.S., Lytkina, O.A., Bachurin, S.O., and Shoring, B.Y., Dokl. Biol. Sci., 2012, vol. 446, pp. 471–473.

    Google Scholar 

  6. Steele, J.W. and Gandy, S., Autophagy, 2013, vol. 4, pp. 617–618.

    Article  Google Scholar 

  7. Shevtsova, E.F., Kireeva, E.G., and Bachurin, S.O., Byul. Eksper. Biol. Med., 2001, vol. 132, pp. 652–656.

    Google Scholar 

  8. Shevtsova, E.F., Kireeva, E.G., and Bachurin, S.O., Vestn. RAMN, 2005, no. 9, pp. 13–17.

    Google Scholar 

  9. Burns, A. and Jacoby, R., Lancet, 2008, vol. 372, pp. 179–180.

    Article  Google Scholar 

  10. Sachdeva, D. and Burns, A., CNS Neurosci. Ther., 2011, vol. 3, pp. 199–205.

    Article  Google Scholar 

  11. Fiers, W., FEBS Lett., 1991, vol. 285, pp. 199–212.

    Article  CAS  Google Scholar 

  12. Vassali, P., Ann. Rev. Immunol., 1992, vol. 10, pp. 411–452.

    Article  Google Scholar 

  13. Smith, J.A., Das, A., Ray, S.K., and Banik, N.L., Brain Res. Bull., 2012, vol. 87, pp. 10–20.

    Article  CAS  Google Scholar 

  14. Cacquevel, M.L., Lebeurrier, N., Chéenne, S., and Vivien, D., Curr. Drug Targets, 2004, vol. 5, pp. 529–534.

    Article  CAS  Google Scholar 

  15. Montgomery, S.L. and Bowers, W.J., J. Neuroimmune Pharmacol., 2012, vol. 7, pp. 42–59.

    Article  Google Scholar 

  16. Arvin, B., Neville, L.F., Barone, F.C., and Feuerstein, G.Z., Neurosci. Biobehav. Rev., 1996, vol. 20, pp. 445–452.

    Article  CAS  Google Scholar 

  17. Clark, I.A., Alleva, L.M., and Vissel, B., Pharmacol. Ther., 2010, vol. 128, pp. 519–448.

    Article  CAS  Google Scholar 

  18. Hoffmann, O., Zipp, F., and Weber, J.R., J. Mol. Med. (Berl), 2009, vol. 87, pp. 753–763.

    Article  CAS  Google Scholar 

  19. Rubio-Perez, J.M., and Morillas-Ruiz, J.M., Scientific World Journal, 2012, vol. 2012, pp. 1–15.

    Article  Google Scholar 

  20. Perry, R.T., Collins, J.S., Wiener, H., Acton, R., and Go, R.C., Neurobiol. Aging, 2001, vol. 22, pp. 873–883.

    Article  CAS  Google Scholar 

  21. McAlpine, F.E. and Tansey, M.G., J. Inflamm. Res., 2008, vol. 1, pp. 29–39.

    CAS  Google Scholar 

  22. Rozhnova, U.A., Stepanichev, M.Yu., Korobko, V.G., Gulyaeva, N.V., and Alessenko, A.V., Neurochem. J., 1999, vol. 16, pp. 302–309.

    CAS  Google Scholar 

  23. Osburg, B., Domling, D., Schomburg, L., Ko, Y.T., Voigt, K., and Bickel, U., Am. J. Physiol. Endocrinol. Metab., 2002, vol. 283, pp. 899–908.

    Article  Google Scholar 

  24. Engelhardt, B., J. Neural Transm., 2006, vol. 113, pp. 477–485.

    Article  CAS  Google Scholar 

  25. Giri, R., Shen, Y., Stins, M., Schmidt, A.M., Stern, D., Kim, K.S., and Kalra, V.K., Am. J. Physiol. Cell Physiol., 2000, vol. 279, pp. 1772–1781.

    Google Scholar 

  26. Adibhatla, R.M. and Hatcher, J.F., Subcell. Biochem., 2008, vol. 49, pp. 241–268.

    Google Scholar 

  27. Tweedie, D., Sambamurti, K., and Greig, N.H., Curr. Alzheimer Res., 2007, vol. 4, pp. 378–385.

    Article  CAS  Google Scholar 

  28. Tettamanti, G., Prinetti, A., Bassi, R., Viani, P., Giussani, P., and Riboni, L., J. Lipid. Mediat. Cell. Signal., 1996, vol. 14, pp. 263–275.

    Article  CAS  Google Scholar 

  29. Martinez, T., Chen, X., Bandyopadhyay, S., Merrill, A., and Tansey, M., Mol. Neurodegener., 2012, vol. 13, pp. 7–45.

    Google Scholar 

  30. Jana, A., Hogan, T.L., and Pahan, K., J. Neurol. Sci., 2009, vol. 278, pp. 5–15.

    Article  CAS  Google Scholar 

  31. Barth, B.M., Gustafson, S.J., and Kuhn, T.B., J. Neurosci. Res., 2012, vol. 90, pp. 229–242.

    Article  CAS  Google Scholar 

  32. Wheeler, D., Knapp, E., Bandaru, V.V.R., Wang, Y., Knorr, D., Poirier, C., Mattson, M.P., Geiger, J.D., and Haughey, N.J., J. Neurochem., 2009, vol. 109, pp. 1237–1249.

    Article  CAS  Google Scholar 

  33. Alessenko, A.V., Biomed. Khim., 2013, vol. 59, pp. 25–50.

    Article  CAS  Google Scholar 

  34. Tobinick, E., CNS Drugs, 2009, vol. 23, pp. 713–725.

    Article  CAS  Google Scholar 

  35. Frankola, K.A., Greig, N.H., Luo, W., and Tweedie, D., CNS Neurol. Disord. Drug Targets, 2011, vol. 10, pp. 391–403.

    Article  CAS  Google Scholar 

  36. Bligh, T.G. and Dyer, W.J., Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.

    Article  CAS  Google Scholar 

  37. Alessenko, A.V., Bugrova, A.E., and Dudnik, L.B., Biochem. Soc. Trans., 2004, vol. 32, pp. 144–146.

    Article  CAS  Google Scholar 

  38. Alessenko, A.V., in New Research on Alzheimer’s Disease, Welsh, E.M., Ed., Nova Science Publishers, Inc., 2006, pp. 168–189.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alessenko.

Additional information

Original Russian Text © A.V. Alessenko, S.O. Bachurin, S.V. Gurianova, Y.O. Karatasso, E.F. Shevtsova, L.N. Shingarova, 2015, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessenko, A.V., Bachurin, S.O., Gurianova, S.V. et al. Tumor necrosis factor-alpha is a potential target for the neuroprotector Dimebon. Biochem. Moscow Suppl. Ser. B 9, 189–198 (2015). https://doi.org/10.1134/S199075081502002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075081502002X

Keywords

Navigation