Skip to main content
Log in

Assessment of the Toxic Effect of 2-(Chlorodinitromethyl)-4-Methoxy-6-(4-Methylpiperazine-1-yl)-1,3,5-Triazine by Respiratory Activity of Lymphocytes

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

A method for evaluation of metabolic characteristics of intact cells based on electrochemical registration of their respiratory activity was used to monitor a reaction of lymphocytes to a potential pharmacological agent, 2-(chlorodinitromethyl)-4-methoxy-6-(4-methylpiperazin-1-yl)-1,3,5-triazine. The method ensured an estimation of cytotoxicity of the test compound and made it possible to determine its minimum toxic concentrations for human lymphocytes. It was shown that the obtained results agree with the data of the reference method, MTT-based cell viability assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Afanaseva A.N., Saparova V.B., Selmenskikh T.A., Makarenko I.E. 2021. Optimal choice method of detection of the viability of cell cultures for tests on proliferation and cytotoxicity. Laboratornye Zhivotnye dlia nauchnykh issledovanii (Rus.). 2, 16–24.

  2. Bartholomew E.F., Martini F.H., Nath J.L. 2018. Fundamentals of anatomy and physiology. Global edition. Harlow: Pearson Education Limited.

  3. Azevedo A.M., Prazeres D.M.F., Cabral J.M.S., Fonseca L.P. 2005. Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectronics. 21 (2), 235–247.

    Article  CAS  Google Scholar 

  4. Bachmann T.T., Bilitewski U., Schmid R.D. 1998. A microbial sensor based on pseudomonas putida for phenol, benzoic acid and their monochlorinated derivatives which can be used in water and n-hexane. Analyt. Lett. 31 (14), 2361–2373.

    Article  CAS  Google Scholar 

  5. Ziegler F.D., Strickland E.H., Anthony A. 1962. Oxidative phosphorylation and respiratory regulation in rat liver homogenates measured with the oxygen electrode. Rep. US Army Med. Res. Lab. 1–25.

  6. Voss D.O., Cowles J.C., Bacila M. 1963. A new oxygen electrode model for the polarographic assay of cellular and mitochondrial respiration. Anal. Biochem. 6, 211–222.

    Article  PubMed  CAS  Google Scholar 

  7. Holtzman D., Moore C.L. 1971. A micro-method for the study of oxidative phosphorylation. Biochim. Biophys. Acta. 234 (1), 1–8.

    Article  PubMed  CAS  Google Scholar 

  8. Gaylor J.L., Miyake Y., Yamano T. 1975. Stoichiometry of 4-methyl sterol oxidase of rat liver microsomes. J. Biol. Chem. 250 (18), 7159–7167.

    Article  PubMed  CAS  Google Scholar 

  9. Tedjo W., Chen T. 2020. An integrated biosensor system with a high-density microelectrode array for real-time electrochemical imaging. IEEE Trans. Biomed. Circuits Syst. 14 (1), 20–35.

    Article  PubMed  Google Scholar 

  10. Rajendran S.T., Huszno K., Debowski G., Sotres J., Ruzgas T., Boisen A., Zor K. 2021. Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine. Bioelectrochemistry. 138, 107720.

    Article  PubMed  CAS  Google Scholar 

  11. Cai Y., Wang M., Xiao X., Liang B., Fan S., Zheng Z., Cosnier S., Liu A. 2022. A membraneless starch/O2 biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase. Biosens. Bioelectron. 207, 114197.

    Article  PubMed  CAS  Google Scholar 

  12. Emelyanova E.V., Antipova T.V. 2022. Biosensor approach for electrochemical quantitative assessment and qualitative characterization of the effect of fusaric acid on a culture-receptor. J. Biotechnol. 357, 1–8.

    Article  PubMed  CAS  Google Scholar 

  13. Hiramoto K., Yasumi M., Ushio H., Shunori A., Ino K., Shiku H., Matsue T. 2017. Development of oxygen consumption analysis with an on-chip electrochemical device and simulation. Anal. Chem. 89 (19), 10303– 10310.

    Article  PubMed  CAS  Google Scholar 

  14. Rejmstad P., Johansson J.D., Haj-Hosseini N., Wardell K. 2017. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy. J. Biophotonics. 10 (3), 446–455.

    Article  PubMed  CAS  Google Scholar 

  15. Thews O., Vaupel P. 2015. Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlenther Onkol. 191 (11), 875–882.

    Article  PubMed  Google Scholar 

  16. Lau J.C., Linsenmeier R.A. 2012. Oxygen consumption and distribution in the long-evans rat retina. Exp. Eye Res. 102, 50–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sakr Y. 2010. Techniques to assess tissue oxygenation in the clinical setting. Transfus. Apher. Sci. 43 (1), 79–94.

    Article  PubMed  Google Scholar 

  18. Godsman N., Kohlhaas M., Nickel A., Cheyne L., Mingarelli M., Schweiger L., Hepburn C., Munts C., Welch A., Delibegovic M., Van Bilsen M., Maack C., Dawson D.K. 2022. Metabolic alterations in a rat model of Takotsubo syndrome. Cardiovasc. Res. 118 (8), 1932–1946.

    Article  PubMed  CAS  Google Scholar 

  19. Pandya J.D., Sullivan P.G., Leung L.Y., Tortella F.C., Shear D.A., Deng-Bryant Y. 2016. Advanced and high-throughput method for mitochondrial bioenergetics evaluation in neurotrauma. Methods Mol. Biol. 1462, 597–610.

    Article  PubMed  CAS  Google Scholar 

  20. Divakaruni A.S., Rogers G.W., Murphy A.N. 2014. Measuring mitochondrial function in permeabilized cells using the Seahorse XF analyzer or a Clark-type oxygen electrode. Curr. Protoc. Toxicol. 60, 25.2.1– 25.2.16.

  21. Vial G., Guigas B. 2018. Assessing mitochondrial bioenergetics by respirometry in cells or isolated organelles. Methods Mol. Biol. 1732, 273–287.

    Article  PubMed  CAS  Google Scholar 

  22. Silva A.M., Oliveira P.J. 2012. Evaluation of respiration with clark type electrode in isolated mitochondria and permeabilized animal cells. Methods Mol. Biol. 810, 7–24.

    Article  PubMed  CAS  Google Scholar 

  23. Mitchell R.J., Gu M.B. 2004. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl. Microbiol. Biotechnol. 64 (1), 46–52.

    Article  PubMed  CAS  Google Scholar 

  24. Mungroo N.A., Neethirajan S. 2014. Biosensors for the detection of antibiotics in poultry industry—a review. Biosensors (Basel). 4 (4), 472–493.

    Article  PubMed  Google Scholar 

  25. Chepkova I.F., Anufriyev M.A., Ponomaryova O.N., Alferov V.A., Reshetilov A.N., Shcheglova V.A., Petrova S.N. 2010. The use of immobilized microorganisms-based biosensors to assess toxicity of commodity and children’s products. Toksicologicheskii vestnik (Rus.). 1 (100), 34–40.

  26. Polyak B., Marks R., Rode A., Rettberg P., Horneck G., Baumstark-Khan C. 2001. Comparison between two assay formats: Fiber optic Rec a lux sensor and SOS-lux assay in suspension and comparison between two reporter bacterial cells (Escherichia coli DPD1718 and Salmonella typhimurium TA1535). BIOSET: Biosensors for Environmental Technology. 8, 13–18.

    Google Scholar 

  27. Kovtun S.V. 2009. Studies of ejections from traffic flows by using bioluminescence. Gornyi informatsionno-analyticheskii bulletin (Rus.). S18, 118–121.

  28. Agilent Technologies Inc. How Agilent Seahorse XF analyzers work | Agilent. https://www.agilent.com/ en/products/cell-analysis/how-seahorse-xf-analyzers-work [Electronic source] (Access date: 23.03.2023).

  29. Iliasov P.V., Guseva O.S., Kuricyna A.P., Limareva L.V. 2022. An assessment of physiological and biochemical characteristics of cells based on the respiratory activity under substrates and toxic substances impact. Geny i kletki (Rus.). 17 (4), 115–124.

  30. Gidaspov A.A., Bakharev V.V., Kachanovskaya E.V., Kosareva E.A., Galkina M.V., Ekimova E.V., Yakunina N.G., Bulychev Y.N. 2004. Synthesis and cytotoxic activity of halogen-containing dinitromethyl-1,3,5-triazine derivatives. Pharm. Chem. J. 38 (8), 411–419.

    Article  CAS  Google Scholar 

  31. Treshchalina E.M., Zhukova O.S., Gerasimova G.K., Andronova N.V., Garin A.M. 2005. Methodological guidelines for the study of antitumor activity of pharmacological substances. In: Guide for experimental (pre-clinical) study of new pharmacological substances. Ed. Khabriev R.U. Moscow: Medicine, pp. 637–674.

    Google Scholar 

Download references

Funding

The work was carried out with the use of budget funds as a part of the State Assignment Registration No. 122020100109-6 at the Samara State Medical University of the Ministry of Health of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Sizova.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Sizova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: 2-(Chlorodinitromethyl)-4-Methoxy-6-(4-Methylpiperazine-1-yl)-1,3,5-Triazine, 2-ChMMT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliasov, P.V., Limareva, L.V., Sizova, A.I. et al. Assessment of the Toxic Effect of 2-(Chlorodinitromethyl)-4-Methoxy-6-(4-Methylpiperazine-1-yl)-1,3,5-Triazine by Respiratory Activity of Lymphocytes. Biochem. Moscow Suppl. Ser. A 17, 269–275 (2023). https://doi.org/10.1134/S1990747823050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823050057

Keywords:

Navigation