Skip to main content
Log in

Mechanism of pore formation in stearoyl-oleoyl-phosphatidylcholine membranes subjected to lateral tension

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Theoretical model of a through pore formation in lipid bilayer membrane under applied lateral tension was developed. In the framework of elastic theory of liquid crystals adapted to lipid membranes, we calculated a continuous trajectory from intact bilayer through a hydrophobic defect to a through pore. It was shown that the major energetic characteristic of membrane stability with respect to the pore formation, i. e., line tension, depends both on the pore radius and on the value of the applied lateral tension. This leads to a non-monotonous dependence of the average waiting time of the pore formation on the lateral tension: at low tensions the waiting time was large, then there was a local minimum, after which the average waiting time was increasing again. For membranes formed from stearoyl oleoyl phosphatidylcholine, the local minimum corresponded to the lateral tension of 7 mN/m; the calculated value of the edge line tension of a large pore was 16.5 pN. These results are consistent with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer S.J., Nicolson G.L. 1972. The fluid mosaic model of the structure of cell membranes. Science. 175, 720–731.

    Article  CAS  PubMed  Google Scholar 

  2. Orlowski S., Mir L.M. 1993. Cell electropermeabilization: A new tool for biochemical and pharmacological studies. Biochim. Biophys. Acta. 1154, 51–63.

    Article  CAS  PubMed  Google Scholar 

  3. Derjaguin B.V. Gutop Yu.V. 1962. Theory of the destruction (rupture) of free films. Kolloidnyi Jurn. (Rus.). 24, 431–437.

    Google Scholar 

  4. Evans E., Heinrich V., Ludwig F., Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Evans E., Smith B.A. 2011. Kinetics of hole nucleation in biomembrane rupture. New J. Phys. 13, 095010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Levadny V., Tsuboi T., Belaya M., Yamazaki M. 2013. Rate constant of tension-induced pore formation in lipid membranes. Langmuir. 29, 3848–3852.

    Article  CAS  PubMed  Google Scholar 

  7. Portet T., Dimova R. 2010. A new method for measuring edge tensions and stability of lipid bilayers: Effect of membrane composition. Biophys. J. 99, 3264–3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abiror I.G., Arakelyan V.B., Chernomordik L.V., Chizmadzhev Y.A., Pastushenko V.F., Tarasevich M.R. 1979. Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. J. Electroanal. Chem. 104, 37–52.

    Google Scholar 

  9. Glaser R.W., Leikin S.L., Chernomordik L.V., Pastushenko V.F., Sokirko A.I. 1988. Reversible electrical breakdown of lipid bilayers: Formation and evolution of pores. Biochim. Biophys. Acta. 940, 275–287.

    Article  CAS  PubMed  Google Scholar 

  10. May S. 2000. A molecular model for the line tension of lipid membranes. EEq. Phys. J. E. 3, 37–44.

    CAS  Google Scholar 

  11. Molotkovsky R.J., Akimov S.A. 2009. Calculation of line tension in various models of lipid bilayer pore edge. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 3, 223–230.

    Article  Google Scholar 

  12. Akimov S.A., Mukovozov A.A., Voronina G.F., Chizmadzhev Y.A., Batishchev O.V. 2014. Line tension and structure of through pore edge in lipid bilayer. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 8, 297–303.

    Article  Google Scholar 

  13. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kollmitzer B., Heftberger P., Rappolt M., Pabst G. 2013. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter. 9, 10877–10884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamm M., Kozlov, M.M. 2000. Elastic energy of tilt and bending of fluid membranes. EEq. Phys. J. E. 3, 323–335.

    CAS  Google Scholar 

  16. Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71, 2623–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagle J.F., Wilkinson D.A. 1978. Lecithin bilayers. Density measurement and molecular interactions. Biophys. J. 23, 159–175.

    CAS  PubMed  Google Scholar 

  18. Akimov S.A., Molotkovsky R.J., Galimzyanov T.R., Radaev A.V., Shilova L.A., Kuzmin P.I., Batishchev O.V., Voronina G.F., Chizmadzhev Y.A. 2014. Model of membrane fusion: Continuous transition to fusion pore with regard of hydrophobic and hydration interactions. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 8, 153–161.

    Article  Google Scholar 

  19. Marcelja S. 1977. Structural contribution to solute–solute interaction. Croat. Chem. Acta. 49, 347–357.

    CAS  Google Scholar 

  20. Israelachvili J., Pashley R. 1982. The hydrophobic interaction is long range, decaying exponentially with distance. Nature. 300, 341–342.

    Article  CAS  PubMed  Google Scholar 

  21. Shnyrova A.V., Bashkirov P.V., Akimov S.A., Pucadyil T.J., Zimmerberg J., Schmid S.L., Frolov V.A. 2013. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science. 339, 1433–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamm M., Kozlov M.M. 1998. Tilt model of inverted amphiphilic mesophase. EEq. Phys. J. B. 6, 519–528.

    CAS  Google Scholar 

  23. Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2001. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA. 98, 7235–7240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weaver J.C., Chizmadzhev Y.A. 1996. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41, 135–160.

    Article  CAS  Google Scholar 

  25. Helfrich W. 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28c, 693–703.

    Google Scholar 

  26. Melikov K.C., Frolov V.A., Shcherbakov A., Samsonov A.V., Chizmadzhev Y.A., Chernomordik L.V. 2001. Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J. 80, 1829–1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kozlov M.M., Leikin S., Rand R.P. 1994. Bending, hydration and interstitial energies quantitatively account for the hexagonal–lamellar–hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine. Biophys. J. 67, 1603–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rand R.P., Fuller N.L. 1994. Structural dimensions and their changes in a reentrant hexagonal–lamellar transition of phospholipids. Biophys. J. 66, 2127–2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galimzyanov T.R., Molotkovsky R.J., Bozdaganyan M.E., Cohen F.S., Pohl P., Akimov S.A. 2015. Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains. Phys. Rev. Lett. 115, 088101.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Risselada H.J., Marrink S.J. 2008. The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA. 105, 17367–17372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schaefer L.V., Marrink S.J. 2010. Partitioning of lipids at domain boundaries in model membranes. Biophys. J. 99, L91–L93.

    Article  CAS  Google Scholar 

  32. Perlmutter J.D., Sachs J.N. 2011. Interleaflet interaction and asymmetry in phase separated lipid bilayers: Molecular dynamics simulations. J. Am. Chem. Soc. 133, 6563–6577.

    Article  CAS  PubMed  Google Scholar 

  33. Pantano D.A., Moore P.B., Klein M.L., Discher D.E. 2011. Raft registration across bilayers in a molecularly detailed model. Soft Matter. 7, 8182–8191.

    Article  CAS  Google Scholar 

  34. Awasthi N., Hub J.S. 2016. Simulations of pore formation in lipid membranes: Reaction coordinates, convergence, hysteresis, and finite-size effects. J. Chem. Theory Comput. 12, 3261–3269.

    Article  CAS  PubMed  Google Scholar 

  35. Karatekin E., Sandre O., Guitouni H., Borghi N., Puech P.H., Brochard-Wyart F. 2003. Cascades of transient pores in giant vesicles: Line tension and transport. Biophys. J. 84, 1734–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akimov S.A., Kuzmin P.I., Zimmerberg J., Cohen F.S. 2007. Lateral tension increases the line tension between two domains in a lipid bilayer membrane. Phys. Rev. E. 75, 011919.

    Article  Google Scholar 

  37. Akimov S.A., Frolov V.A., Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. 2008. Domain formation in membranes caused by lipid wetting of protein. Phys. Rev. E. 77, 051901.

    Article  Google Scholar 

  38. Ayuyan A.G., Cohen F.S. 2008. Raft composition at physiological temperature and pH in the absence of detergents. Biophys. J. 94, 2654–2666.

    Article  CAS  PubMed  Google Scholar 

  39. Akimov S.A., Hlaponin E.A., Bashkirov P.V., Boldyrev I.A., Mikhalyov I.I., Telford W.G., Molotkovskaya I.M. 2009. Ganglioside GM1 increases line tension at raft boundary in model membranes. Biol. Membrany (Rus.). 26, 234–239.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Additional information

Original Russian Text © S.A. Akimov, V.V. Aleksandrova, T.R. Galimzyanov, P.V. Bashkirov, O.V. Batishchev, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 4, pp. 270–283.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, S.A., Aleksandrova, V.V., Galimzyanov, T.R. et al. Mechanism of pore formation in stearoyl-oleoyl-phosphatidylcholine membranes subjected to lateral tension. Biochem. Moscow Suppl. Ser. A 11, 193–205 (2017). https://doi.org/10.1134/S1990747817030023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817030023

Keywords

Navigation