Skip to main content
Log in

Intensification and redistribution of protrusive activity is a feature of tumor transformation and is associated with an increase of the invasive potential of cells

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The abilities of tumor cells to invade and metastasize are frequent causes of death of cancer patients. Studying the mechanisms of cell motility alterations and acquisition of enhanced metastatic potential as the result of transformation is an important aspect in current cell biology. The initial and determinant step of cell motility is the formation of active cell edge with protrusions based on the Arp2/3-dependent actin polymerization. We used three different cell systems as examples of different models of tumor transformation to study the alteration and redistribution of protrusive activity caused by transformation in fibroblasts. We analyzed relationships between detected alterations and the acquisition of increased invasive potential by cells. Active edge of untransformed fibroblasts occupies about 50% of the cell perimeter and is concentrated at the cell front. There are well pronounced stable regions at the lateral cell edges. Tumor transformation causes redistribution of protrusive activity of fibroblasts irrespective of their origin and the nature of transforming agents. The length of active edges significantly increases, up to 92% of the total perimeter in fibrosarcoma cells of tumor origin. These cells have practically no stable edges. The intensity of protrusive activity of transformed cells is also increased. Single transformed cells show a decrease in the directionality and rate of migration on 2D substrate without special stimulation. Instead, they gain the capacity to migrate in 3D and to invade matrigel. These abilities increase in parallel with the intensification of edge activity. We showed that invasive abilities are not associated with the activation of matrix metalloproteinases in the studied cell systems. Our data demonstrate that the increase of length of active edge could be considered as an additional feature of cell transformation together with the reduction of stress fiber and focal adhesions and that the excessive protrusive activity results in the development of explorative migration of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanahan D., Weinberg R.A. 2011. Hallmarks of cancer: The next generation. Cell. 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Vasiliev J.M. 2004. Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. Int. J. Dev. Biol. 48, 425–439.

    Article  CAS  PubMed  Google Scholar 

  3. Friedl P., Wolf K. 2003. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer. 3, 362–374.

    Article  CAS  PubMed  Google Scholar 

  4. Vasiliev J.M., Gelfand I.M. 1981. Neoplastic and normal cells in culture. Cambridge: Cambridge University Press.

  5. Kharitonova M.A., Kopnin P.B., Vasiliev J.M. 2007. Transformation by RAS oncogene decreases the width of substrate-spread fibroblasts but not their length. Cell. Biol. Int. 31, 220–223.

    Article  CAS  PubMed  Google Scholar 

  6. Minina S.A., Aleksandrova A.Y., Vasil’ev Y.M. 2003. Changes in the cell shape and actin cytoskeleton during the ras oncogene-induced transformation: A possible role of Rho kinase. Dokl. Akad. Nauk (Rus.). 388 (3), 413–415 [Translated version in: Dokl. Biol. Sci. 388, 83–85].

    Google Scholar 

  7. Lomakina M.E., Aleksandrova A.Yu. 2009. Analysis of changes induced by oncogene N-RAS expression in pattern and distribution of pseudopodial activity of fibroblasts. Ontogenez (Rus.). 40, 282–293.

    CAS  Google Scholar 

  8. Kopnin B.P. 2004. Fundamental properties of a neoplastic cell and basic mechanisms of their emergence. In: Kantserogenez (Carcinogenesis), D.G. Zaridze, Ed. Moscow: Meditsina, p. 86–102.

    Google Scholar 

  9. Huschtscha L.I., Holliday R. 1983. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J. Cell. Sci. 63, 77–99.

    CAS  PubMed  Google Scholar 

  10. Deryugina E.I. Bourdon M.A., Luo G.X., Reisfeld R.A., Strongin A. 1997. Matrix metalloproteinase-2 activation modulates glioma cell migration J. Cell. Sci. 110, 2473–2482.

    CAS  Google Scholar 

  11. Harvey D.M., Levine A.J. 1991. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev. 5, 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobs J.P., Jones C.M., Baillie J.P. 1970. Characteristics of a human diploid cell designated MRC-5. Nature. 227, 168–170.

    Article  CAS  PubMed  Google Scholar 

  13. Rasheed S., Nelson-Rees W.A., Toth E.M., Arnstein P., Gardner M.B. 1974. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 33, 1027–1033.

    Article  CAS  PubMed  Google Scholar 

  14. Strongin A.Y., Marmer B.L., Grant G.A., Goldberg G.I. 1993. Plasma membrane-dependent activation of the 72-kDa type IVcollagenase is prevented by complex formation with TIMP. J. Biol. Chem. 268, 14033–14039.

    CAS  PubMed  Google Scholar 

  15. Hinz B., Alt W., Johnen C., Herzog V., Kaiser H.W. 1999. Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp. Cell Res. 251, 234–243.

    Article  CAS  PubMed  Google Scholar 

  16. Bear J.E., Svitkina T.M., Krause M., Schafer D.A., Loureiro J.J., Strasser G.A., Maly I.V., Chaga O.Y., Cooper J.A., Borisy G.G., Gertler F.B. 2002. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell. 109, 509–521.

    Article  CAS  PubMed  Google Scholar 

  17. Young M.R., Liu S.W., Meisinger J. 2003. Protein phoshatase-2A restricts migration of Lewis lung carcinoma cells by modulating the phosphorylation of focal adhesion proteins. Int. J. Cancer. 103, 38–44.

    Article  CAS  PubMed  Google Scholar 

  18. Shutova M.S., Alexandrova A.Y., Vasiliev J.M. 2008. Regulation of polarity in cells devoid of actin bundle system after treatment with inhibitors of myosin II activity. Cell Motil. Cytoskeleton. 65, 734–746.

    Article  CAS  PubMed  Google Scholar 

  19. Svitkina T.M., Borisy G.G. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pollard T.D. 2007. Regulation of actin filament assembly by Arp2/3 complex and formins. Biophys. Biomol. Struct. 36, 451–477.

    Article  CAS  Google Scholar 

  21. Wolf K., Mazo I., Leung H., Engelke K., von Andrian U.H., Deryugina E.I., Strongin A.Y., Brö cker E.B., Friedl P. 2003. Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sariahmetoglu M., Crawford B.D., Leon H., Sawicka J., Li L., Ballermann B.J., Holmes C., Berthiaume L.G., Holt A., Sawicki G., Schulz R. 2007. Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J. 21, 2486–2495.

    Article  CAS  PubMed  Google Scholar 

  23. Yamazaki D., Kurisu K., Takenawa T. 2005. Regulation of cancer cell motility through actin reorganization. Cancer Sci. 96, 379–386.

    Article  CAS  PubMed  Google Scholar 

  24. Rovensky, Y.A., Vasiliev, J.M. 2004. Morphogenetic reactions of cells and their perturbation during tumor transformation. In: Kantserogenez (Carcinogenesis), D.G. Zaridze, Ed. Moscow: Meditsina, pp. 376–414.

    Google Scholar 

  25. Dobrinskikh E.A. 2007. Study of roles of the microtubule systems and actin filaments in fibroblast motility. Extended Abstract of Cand. Sci. Dissertation. Moscow Lomonosov State University, Moscow, 2007, pp. 1–23.

    Google Scholar 

  26. Mercurio A.M., Rabinovitz I. 2001. Towards a mechanistic understanding of tumor invasion–leßsons from the a6ß4 integrin. Semin. Cancer Biol. 11, 129–141.

    Article  CAS  PubMed  Google Scholar 

  27. Ramos D.M., But M., Regezi J., Schmidt B.L., Atakilit A., Dang D., Ellis D., Jordan R., Li X. 2002. Expreßsion of integrin ß6 enchances invasive behavior in oral squamous cell carcinoma. Matrix Biol. 21, 297–307.

    Article  CAS  PubMed  Google Scholar 

  28. Maschler S., Wirl G., Spring H., Bredow D.V., Sordat I., Beug H., Reichmann E. 2005. Tumor cell invasiveness correlates with changes in integrin expression and localization. Oncogene. 17, 2032–2041.

    Article  Google Scholar 

  29. Bar-Sagi D., Hall A. 2000. Ras and Rho GTPases: A family reunion. Cell. 103, 227–238.

    Article  CAS  PubMed  Google Scholar 

  30. Repasky G.A., Chenette E.J., Der C.J. 2004. Renewing the conspiracy theory debate: Does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 14, 639–647.

  31. Burridge K., Wennerberg K. 2004. Rho and Rac take center stage. Cell. 2, 167–179.

    Article  Google Scholar 

  32. Ridley A.J. 2011. Life at the leading edge. Cell. 145, 1012–1022.

    Article  CAS  PubMed  Google Scholar 

  33. Pankov R., Endo Y., Even-Ram S., Araki M., Clark K., Cukierman E., Matsumoto K., Yamada K.M. 2005. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170, 793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan C., Beltzner C.C., Pollard T.D. 2009. Cofilin dissociates Arp2/3-complex and branches from actin filaments. Curr. Biol. 19, 537–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DesMarais V., Ghosh M., Eddy R., Condeelis J. 2005. Cofilin takes the lead. J. Cell Sci. 118, 19–26.

    Article  CAS  PubMed  Google Scholar 

  36. Bershadsky A.D., Ballestrem C., Carramusa L., Zilberman Y., Gjlguin B., Khochbn S., Alexandrova A.Y., Verkhovsky A.B., Shemesh T., Kozlov M.M. 2006. Assembly and mechanosensory function of focal adhesions: Experiments and models. Eur. J. Cell Biol. 85, 165–173.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Alexandrova.

Additional information

Original Russian Text © M.E. Lomakina, M.S. Shutova, A.Y. Zhuravskaya, A.Y. Alexandrova, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 1, pp. 32–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomakina, M.E., Shutova, M.S., Zhuravskaya, A.Y. et al. Intensification and redistribution of protrusive activity is a feature of tumor transformation and is associated with an increase of the invasive potential of cells. Biochem. Moscow Suppl. Ser. A 11, 35–47 (2017). https://doi.org/10.1134/S1990747816040152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816040152

Keywords

Navigation