Skip to main content
Log in

Specific issues of mitochondrial fragmentation (Fission)

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In 1983 we discovered a phenomenon of the total fragmentation (fission) of the entire mitochondrial population in a cell following the exposure to a mitochondrial inhibitor. Further experiments showed that a wide range of substances acting on mitochondria can cause the transformation of filamentous structures to small globular vesicles (the thread–grain transition). Fragmentation of mitochondria clearly begins with the formation of a septum formed by the inner mitochondrial membranes, leading to the division of mitochondria into a number of compartments, not necessarily of the same configuration. Visible signs of fragmentation of the mitochondrial reticulum appeared after an hour of the exposure to mitochondrial inhibitors; the process of mitochondrial fission was markedly accelerated and developed within seconds when the cells stained with fluorescent probes were exposed to excitation light and were affected photodynamically. The crucial role of reactive oxygen species in the initiation of the process of mitochondrial fission is proposed. Before the formation of septa, local enlightenment of mitochondrial matrix (local swelling) can be observed, which indicates the possibility of the existence of intramitochondrial skeleton that maintains the shape of the mitochondria. The septum formation and fragmentation gives rise to different populations of mitochondria. Apparently, this is a part of the mechanism of mitochondrial quality control and elimination of damaged mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vorobjev I.A., Zorov D.B. 1983. Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum. FEBS Lett. 163 (2), 311–314.

    Article  PubMed  CAS  Google Scholar 

  2. Nunnari J., Marshall W.F., Straight A., Murray A., Sedat J.W., Walter P. 1997. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell. 8, 1233–1242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chan D.C. 2006. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22, 79–99.

    Article  PubMed  CAS  Google Scholar 

  4. Jin S.M., Lazarou M., Wang C., Kane L.A., Narendra D.P., Youle R.J. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191 (5), 933–942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hoppins S., Lackner L., Nunnari J. 2007. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780.

    Article  PubMed  CAS  Google Scholar 

  6. Andres A.M., Stotland A., Queliconi B.B., Gottlieb R.A. 2015. A time to reap, a time to sow: Mitophagy and biogenesis in cardiac pathophysiology. J. Mol. Cell. Cardiol. 78, 62–72.

    Article  PubMed  CAS  Google Scholar 

  7. Avad A.S., Vorobjev I.A., Zorov D.B. 1984. Fragmentation of mitochondrial reticulum. In: Proc. XVI FEBS Meet. Moscow, p. 296, abstr. XI-080.

    Google Scholar 

  8. Polyakova I.A., Zorov D.B., Leikina M.I. 1995. Structural and functional alterations in mitochondria in cultured cells with imaired energetic metabolism. Dokl. Akad. Nauk SSSR (Rus.). 342 (4), 553–555.

    CAS  Google Scholar 

  9. Zorov D.B., Isaev N.K., Plotnikov E.Yu., Zorova L.D., Stelmashuk E.V., Vasiljeva A.K., Arkhangelskaya A.A., Khriapenkova T.G. 2007. Mitochondria as Janus Bifrons. Biochemistry (Moscow). 72 (10), 1115–1126.

    Article  PubMed  CAS  Google Scholar 

  10. Zorov D.B., Isaev N.K., Plotnikov E.Y., Silachev D.N., Zorova L.D., Pevzner I.B., Morosanova M.A., Jankauskas S.S., Zorov S.D., Babenko V.A. 2013. Perspectives of mitochondrial medicine. Biokhimia (Rus.). 78 (9), 979–990.

    Article  CAS  Google Scholar 

  11. Silachev D.N., Plotnikov E.Y., Pevzner I.B., Zorova L.D., Babenko V.A., Zorov S.D., Popkov V.A., Jankauskas S.S., Zinchenko V.P., Sukhikh G.T., Zorov D.B. 2014. The mitochondrion as a key regulator of ischaemic tolerance and injury. Heart Lung Circ. 23 (10), 897–904.

    Article  PubMed  Google Scholar 

  12. Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROSinduced ROS release. Physiol. Rev. 94 (3), 909–950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Skulachev V.P., Bakeeva L.E., Chernyak B.V., Domnina L.V., Minin A.A., Pletjushkina O.Y., Saprunova V.B., Skulachev I.V., Tsyplenkova V.G., Vasiliev J.M., Yaguzhinsky L.S., Zorov D.B. 2004. Thread–grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol. Cell. Biochem. 256–257 (1–2), 341–358.

    Article  PubMed  Google Scholar 

  14. Frederic J., Chevremont M. 1952. Recherches sur les chondriosomes de cellules vivantes par la microscopie et la microcinematographie en contraste de phase (1re partie). Arch. Biol. (Liege), 63, 109–131.

    CAS  Google Scholar 

  15. Benda C. 1900. Weitere Beobachtungen uber die Mitochondria und ihr Verhaltnus zu Sekretgranulationen nebst kritischen Bemerkungen. Arch. Anat. Physiol. 24, 166–178.

    Google Scholar 

  16. Zorov D.B., Bannikova S.Yu., Belousov V.V., Vyssokikh M.Yu., Zorova L.D., Isaev N.K., Krasnikov B.F., Plotnikov E.Yu. 2005. Reactive oxygen and nitrogen species: Friends or foes? Biochemistry (Moscow). 70 (2), 215–221.

    Article  CAS  Google Scholar 

  17. Bakeeva L.E., ·Chentsov Yu.S., Skulachev V.P. 1978. Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochim. Biophys. Acta. 501 (3), 349–369.

    Article  PubMed  CAS  Google Scholar 

  18. Bakeeva L.E., Chentsov Yu.S., Skulachev V.P. 1983. Intermitochondrial contacts in myocardiocytes. J. Mol. Cell. Cardiol. 15 (7), 413–420.

    Article  PubMed  CAS  Google Scholar 

  19. Bakeeva L.E., Skulachev V.P., Chentsov Yu.S. 1982. Formation of the mitochondrial reticulum in diaphragm muscle during rat ontogenesis. Ontogenez (Rus.). 13 (3), 313–317.

    CAS  Google Scholar 

  20. Tikhova M.G., Bakeeva L.E., Chentsov Yu.S. 1988. A study on the stability of intermitochondrial contacts in the process of preparative isolation of mitochondria. Biol. membrany (Rus.). 5 (9), 970–978.

    CAS  Google Scholar 

  21. Drachev V.A., Zorov D.B. 1986. Mitochondria as an electrical cable. Experimental testing of the hypothesis. Dokl. Akad. Nauk SSSR (Rus.). 287 (5), 1237–1238.

    CAS  Google Scholar 

  22. Amchenkova A.A., Bakeeva L.E., Chentsov Y.S., Skulachev V.P., Zorov D.B. 1988. Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J. Cell Biol. 107 (2), 481–495.

    Article  PubMed  CAS  Google Scholar 

  23. Zorov D.B., Skulachev V.P., Chalangk V. 1990. Membrane electrical cables. 4. Mitochondrial helix of rat spermatozoa. Biol. membrany (Rus.). 7 (3), 243–249.

    CAS  Google Scholar 

  24. Smith R.A., Ord M.J. 1983. Mitochondrial form and function relationships in vivo: Their potential in toxicology and pathology. Int. Rev. Cytol. 83, 63–134.

    Article  PubMed  CAS  Google Scholar 

  25. Ord M.J., Smith R.A. 1982. Correlation of mitochondrial form and function in vivo: Microinjection of substrate and nucleotides. Cell Tissue Res. 227 (1), 129–137.

    Article  PubMed  CAS  Google Scholar 

  26. Zorov D.B., Krasnikov B.F., Kuzminova A.E., Vysokikh M.Yu., Zorova L.D. 1997. Mitochondria revisited. Alternative functions of mitochondria. Biosci. Rep. 17 (6), 507–520.

    Article  PubMed  CAS  Google Scholar 

  27. Zorov D.B., Plotnikov E.Y., Silachev D.N., Zorova L.D., Pevzner L.D., Zorov S.D., Babenko V.A., Yankauskas S.S., Popkov V.A. 2014. Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochemistry (Moscow). 79 (10), 1017–1031.

    Article  PubMed  CAS  Google Scholar 

  28. Popkov V.A., Plotnikov E.Y., Lyamzaev K.G., Silachev D.N., Zorova L.D., Pevzner I.B., Yankauskas S.S., Zorov S.D., Babenko V.A., Zorov D.B. 2015. Mitodiversity. Biokhimia (Rus.). 80 (5), 631–641. [Translated version in Biochemistry (Moscow). 80 (5), 532–541].

    Google Scholar 

  29. Pletjushkina O.Y., Lyamzaev K.G., Popova E.N., Nepryakhina O.K., Ivanova O.Y., Domnina L.V., Chernyak B.V., Skulachev V.P. 2006. Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim. Biophys. Acta. 1757 (5–6), 518–524.

    Article  PubMed  CAS  Google Scholar 

  30. Zorov D.B., Plotnikov E.Yu., Yankauskas S.S., Isaev N.K., Silachev D.N., Zorova L.D., Pevzner I.B., Pul’kova N.V., Zorov S.D., Morosanova M.A. 2012. The phenoptosis problem. Why does the organism die? Lessons from renal failure. Biokhimia (Rus.). 77 (7), 893–906. [Translated version in Biochemistry (Moscow). 77 (7), 742–753].

    Google Scholar 

  31. Plotnikov E.Y., Vasileva A.K., Arkhangelskaya A.A., Pevzner I.B., Skulachev V.P., Zorov D.B. 2008. Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: Protective effects of SkQ1, lithium ions and insulin. FEBS Lett. 582 (20), 3117–3124.

    Article  PubMed  CAS  Google Scholar 

  32. Plotnikov E.Y., Kazachenko A.V., Vyssokikh M.Y., Vasileva A.K., Tcvirkun D.V., Isaev N.K., Kirpatovsky V.I., Zorov D.B. 2007. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int. 72 (12), 1493–1502.

    Article  PubMed  CAS  Google Scholar 

  33. Twig G., Hyde B., Shirihai O.S. 2008. Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochim. Biophys. Acta. 1777 (9), 1092–1097.

    Article  PubMed  CAS  Google Scholar 

  34. Jin S.M., Lazarou M., Wang C., Kane L.A., Narendra D.P., Youle R.J. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191 (5), 933–942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hershko A., Ciechanover A. 1982. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51, 335–364.

    Article  PubMed  CAS  Google Scholar 

  36. De Duve C., Wattiaux R. 1966. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492.

    Article  PubMed  Google Scholar 

  37. Lemasters J.J. 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuven. Res. 8 (1), 3–5.

    Article  CAS  Google Scholar 

  38. Kinnally K.W., Zorov D., Antonenko Y., Perini S. 1991. Calcium modulation of mitochondrial inner membrane channel activity. Biochem. Biophys. Res. Commun. 176 (3), 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  39. Szabó I., Zoratti M. 1991. The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J. Biol. Chem. 266 (6), 3376–3379.

    PubMed  Google Scholar 

  40. Romashko D.N., Marban E., ·O’Rourke B. 1998. Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc. Natl. Acad. Sci. USA. 95, 1618–1623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Häser J., Rechenmacher C.E., Blatter L.A. 1998. Imaging the permeability pore transition in single mitochondria. Biophys. J. 74 (4), 2129–2137.

    Article  Google Scholar 

  42. Zorov D.B., Filburn C.R., Klotz L.O., Zweier J.L., Sollott S.J. 2000. Reactive oxygen species (ROS)induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192 (7), 1001–1014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Korshunov S.S., Skulachev V.P., Starkov A.A. 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1), 15–18.

    Article  PubMed  CAS  Google Scholar 

  44. Skulachev V.P. 1996. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys. 29 (2), 169–202.

    Article  PubMed  CAS  Google Scholar 

  45. Cunha F.M., Caldeira da Silva C.C., Cerqueira F.M., Kowaltowski A.J. 2011. Mild mitochondrial uncoupling as a therapeutic strategy. Curr. Drug. Targets. 12 (6), 783–789.

    Article  PubMed  CAS  Google Scholar 

  46. Plotnikov E.Y., Silachev D.N., Yankauskas S.S., Rokitskaya T.Sh., Chuprykina A.A., Pevzner I.B., Zorova L.D., Isaev N.K., Antonenko Yu.N., Skulachev V.P., Zorov D.B. 2012. Mild uncoupling of respiration and phosphorylation as a mechanism ensuring nephroand neuroprotector properties of the SkQfamily cations. Biochemistry (Moscow). 77 (9), 1029–1037.

    Article  PubMed  CAS  Google Scholar 

  47. Khailova L.S., Silachev D.N., Rokitskaya T.I., Avetisyan A.V., Lyamsaev K.G., Severina I.I., Il’yasova T.M., Gulyaev M.V., Dedukhova V.I., Trendeleva T.A. Plotnikov E.Y., Zvyagilskaya R.A., Chernyak B.V., Zorov D.B., Antonenko Y.N., Skulachev V.P. 2014. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. Biochim. Biophys. Acta. 1837 (10), 1739–1747.

    Article  PubMed  CAS  Google Scholar 

  48. Pihl E., Bahr G.F. 1970. Matrix structure of critical point dried mitochondria. Exp. Cell Res. 63 (2), 391–403.

    Article  PubMed  CAS  Google Scholar 

  49. Lane N.J. 1969. Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J. Cell Biol. 40, 286–291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bannikova S., Zorov D.B., Shoeman R.L., Tolstonog G.V., Traub P. 2005. Stability and association with the cytomatrix of mitochondrial DNA in spontaneously immortalized mouse embryo fibroblasts containing or lacking the intermediate filament protein vimentin. DNA Cell. Biol. 24 (11), 710–735.

    Article  PubMed  CAS  Google Scholar 

  51. Chen H., Chan D.C. 2004. Mitochondrial dynamics in mammals. Curr. Top. Dev. Biol. 59, 119–144.

    Article  PubMed  CAS  Google Scholar 

  52. Youle R.J., van der Bliek A.M. 2012. Mitochondrial fission, fusion, and stress. Science. 337 (6098), 1062–1065.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Zorov.

Additional information

Original Russian Text © D.B. Zorov, I.A. Vorobjev, E.Y. Plotnikov, D.N. Silachev, L.D. Zorova, I.B. Pevzner, V.A. Babenko, S.D. Zorov, S.S. Jankauskas, V.A. Popkov, 2015, published in Biologicheskie Membrany, 2015, Vol. 32, No. 5–6, pp. 338–345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorov, D.B., Vorobjev, I.A., Plotnikov, E.Y. et al. Specific issues of mitochondrial fragmentation (Fission). Biochem. Moscow Suppl. Ser. A 9, 278–284 (2015). https://doi.org/10.1134/S1990747815050219

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747815050219

Keywords

Navigation