Skip to main content
Log in

Mechanisms of improving the neuroprotective effects of multipotent stromal cells after Co-culturing with neurons

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

We explored a possibility to maximally alleviate a negative impact of stroke by increasing the therapeutic potential of multipotent mesenchymal stromal cells (MMSC). To do that, we studied the intercellular communication between MMSC and neural cells under their co-cultivation in vitro. Co-cultivation of MMSC and neurons from rat cerebral cortex resulted in a cell contents transfer between cells. Evidence of intercellular exchange was obtained using cytoplasmic fluorescent probes. Thus, we showed that cytosol transfer occurs preferentially from neurons toward MMSC. On the other hand, we observed a reverse intercellular transport of mitochondria (from MMSC toward neural cells). Intravenous administration of MMSC in the post-ischemic period reduced the pathological consequences of stroke, which resulted in a decrease of cerebral lesion and a partial recovery of the neurological status. At the same time, MMSC co-cultured with neurons demonstrated more profound neuroprotective efficiency than the unprimed MMSC. The production of one of the most important neurotrophic factors, BDNF, was slightly increased in MMSC after co-cultivation, and the factor was redistributed in the cytoplasm. We conclude that intercellular communications between neural and stem cells improve the protective capacity of MMSC after stroke. This could be a possible approach to increasing the therapeutic efficiency of cell therapy of cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rother J. 2008. Neuroprotection does not work! Stroke. 39, 523–524.

    Article  PubMed  Google Scholar 

  2. Chen J., Li Y., Wang L., Zhang Z., Lu D., Lu M., Chopp M. 2001. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 32, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  3. Kurozumi K., Nakamura K., Tamiya T., Kawano Y., Ishii K., Kobune M., Hirai S., Uchida H., Sasaki K., Ito Y., Kato K., Honmou O., Houkin K., Date I., Hamada H. 2005. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther. 11, 96–104.

    Article  PubMed  CAS  Google Scholar 

  4. Nomura T., Honmou O., Harada K., Houkin K., Hamada H., Kocsis J.D. 2005. I.V. infusion of brainderived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 136, 161–169.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Shimada I.S., Spees J.L. 2011. Stem and progenitor cells for neurological repair: minor issues, major hurdles, and exciting opportunities for paracrine-based therapeutics. J. Cell Biochem. 112, 374–380.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Domhan S., Ma L., Tai A., Anaya Z., Beheshti A., Zeier M., Hlatky L., Abdollahi A. 2011. Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLOS One. 6, 21283.

    Article  Google Scholar 

  7. Agnati L.F., Guidolin D., Guescini M., Genedani S., Fuxe K. Understanding wiring and volume transmission. 2010. Brain Res. Rev. 64, 137–159.

    Article  PubMed  Google Scholar 

  8. Plotnikov E.Y., Khryapenkova T.G., Galkina S.I., Sukhikh G.T., Zorov D.B. 2010. Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp. Cell Res. 316, 2447–2455.

    Article  PubMed  CAS  Google Scholar 

  9. Cho Y.M., Kim J.H., Kim M., Park S.J., Koh S.H., Ahn H.S., Kang G.H., Lee J.B., Park K.S., Lee H.K. 2012. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLOS One. 7, 32778.

    Article  Google Scholar 

  10. Plotnikov E.Y., Khryapenkova T.G., Vasileva A.K., Marey M.V., Galkina S.I., Isaev N.K., Sheval E.V., Polyakov V.Y., Sukhikh G.T., Zorov D.B. 2008. Cellto-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J. Cell Mol. Med. 12, 1622–1631.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Koyanagi M., Brandes R.P., Haendeler J., Zeiher A.M., Dimmeler S. 2005. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ. Res. 96, 1039–1041.

    Article  PubMed  CAS  Google Scholar 

  12. Longa E.Z., Weinstein P.R., Carlson S., Cummins R. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  13. Koizumi J., Yoshida Y., Nakazawa T., Ooneda G. 1986. Experimental studies of ischemic brain edema? 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn. J. Stroke. 8, 1–8.

    Article  Google Scholar 

  14. Silachev D.N., Uchevatkin A.A., Pirogov Ya., Zorov D.B., Isaev N.K. 2009. Comparing magnetic resonance imaging and triphenyltetrasolic detection of brain lesion as methods of studying experimental focal ischemia. Experimental biology and medicine bulletin. Byul. experim. biologii i meditsiny (Rus.). 147, 232–237.

    Google Scholar 

  15. De Ryck M., Van Reempts J., Borgers M., Wauquier A., Janssen P.A. 1989. Photochemical stroke model: Flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke. 20, 1383–1390.

    Article  PubMed  Google Scholar 

  16. Jolkkonen J., Puurunen K., Rantakomi S., Harkonen A., Haapalinna A., Sivenius J. 2000. Behavioral effects of the a2-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. Eur. J. Pharmacol. 400, 211–219.

    Article  PubMed  CAS  Google Scholar 

  17. Ahmad T., Mukherjee S., Pattnaik B., Kumar M., Singh S., Kumar M., Rehman R., Tiwari B.K., Jha K.A., Barhanpurkar A.P., Wani M.R., Roy S.S., Mabalirajan U., Ghosh B., Agrawal A. 2014. Miro1 regulates intercellular mitochondrial transport and enhances mesenchymal stem cell rescue efficacy. EMBO J. 33, 994–1010.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. Plotnikov.

Additional information

Original Russian Text © E.Y. Plotnikov, V.A. Babenko, D.N. Silachev, L.D. Zorova, I.B. Pevzner, G.T. Sukhikh, D.B. Zorov, 2015, published in Biologicheskie Membrany, 2015, Vol. 32, No. 5–6, pp. 379–387.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, E.Y., Babenko, V.A., Silachev, D.N. et al. Mechanisms of improving the neuroprotective effects of multipotent stromal cells after Co-culturing with neurons. Biochem. Moscow Suppl. Ser. A 9, 285–292 (2015). https://doi.org/10.1134/S1990747815050098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747815050098

Keywords

Navigation