Skip to main content
Log in

Raft formation in biological membranes: A molecular dynamics simulation study

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Rafts are nanoscale domains in membranes rich with sphingomyelin and cholesterol. The process of raft formation was studied using molecular dynamics simulation method. The model membranes contained three types of lipids: cholesterol (CHOL), D-erythro-n-palmitoyl sphingomyelin (SM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). One of the model systems had an SM- and CHOL-enriched domain. It was shown that in this case raft domain spontaneously became thicker and passed from phase Ld to phase Lo. In another model system—a cubic box with mixed SM, CHOL, and POPC—a raft-free bilayer structure in Lo phase was formed. In the third system that had the same lipids mixed in the bilayer structure, a spontaneous formation of the raft was observed. The raft area was 72 nm2 and the content of CHOL and SM in the raft was 2.4- and 3-fold higher respectively than in the non-raft membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer S.J., Nicolson G.L. 1972. The fluid mosaic model of the structure of cell membranes. Science. 175(4023), 720–731.

    Article  CAS  PubMed  Google Scholar 

  2. van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Bio. 9(2), 112–124.

    Article  Google Scholar 

  3. Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387(6633), 569–572.

    Article  CAS  PubMed  Google Scholar 

  4. Edidin M. 2003. The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    Article  CAS  PubMed  Google Scholar 

  5. Pike L.J. 2004. Lipid rafts: Heterogeneity on the high seas. Biochem. J. 378(Pt 2), 281–292.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Simons K., Vaz W.L. 2004. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295.

    Article  CAS  PubMed  Google Scholar 

  7. Gaus K., Gratton E., Kable E.P., Jones A.S., Gelissen I., Kritharides L., Jessup W. 2003. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl. Acad. Sci. USA. 100(26), 15554–15559.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Brown R.E. 1998. Sphingolipid organization in biomembranes: What physical studies of model membranes reveal. J. Cell Sci. 111, 1–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Lee A.G. 1977. Lipid phase transitions and phase diagrams. II. Mictures involving lipids. Biochim. Biophys. Acta. 472(3–4), 285–344.

    Article  CAS  PubMed  Google Scholar 

  10. Silvius J.R. 2003. Role of cholesterol in lipid raft formation: Lessons from lipid model systems. Biochim. Biophys. Acta. 1610(2), 174–183.

    Article  CAS  PubMed  Google Scholar 

  11. London E. 2005. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta. Mol. Cell Res. 1746(3), 203–220.

    Article  CAS  Google Scholar 

  12. Almeida P.F.F., Pokorny A., Hinderliter A. 2005. Thermodynamics of membrane domains. Biochim. Biophys. Acta. Biomembranes. 1720(1–2), 1–13.

    Article  CAS  Google Scholar 

  13. Radhakrishnan A., McConnell H.M. 1999. Condensed complexes of cholesterol and phospholipids. Biophys. J. 77(3), 1507–1517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Radhakrishnan A., McConnell H.M. 1999. Cholesterol-phospholipid complexes in membranes. J. Am. Chem. Soc. 121(2), 486–487.

    Article  CAS  Google Scholar 

  15. Slotte J.P. 1995. Lateral domain heterogeneity in cholesterol phosphatidylcholine monolayers as a function of cholesterol concentration and phosphatidylcholine acyl-chain length. Biochim. Biophys. Acta. Biomembranes. 1238(2), 118–126.

    Article  Google Scholar 

  16. Dietrich C., Volovyk Z.N., Levi M., Thompson N.L., Jacobson K. 2001. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA. 98(19), 10642–10647.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Radhakrishnan A., Li X.M., Brown R.E., McConnell H.M. 2001. Stoichiometry of cholesterol-sphingomyelin condensed complexes in monolayers. Biochim. Biophys. Acta. 1511(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  18. Mattjus P., Slotte J.P. 1996. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Chem. Phys. Lipids. 81(1), 69–80.

    Article  CAS  PubMed  Google Scholar 

  19. Aussenac F., Tavares M., Dufourc E.J. 2003. Cholesterol dynamics in membranes of raft composition: A molecular point of view from 2H and 31P solid-state NMR. Biochemistry. 42(6), 1383–1390.

    Article  CAS  PubMed  Google Scholar 

  20. Gandhavadi M., Allende D., Vidal A., Simon S.A., McIntosh T.J. 2002. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys. J. 82(3), 1469–1482.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rinia H.A., Snel M.M., van der Eerden J.P., de Kruijff B. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501(1), 92–96.

    Article  CAS  PubMed  Google Scholar 

  22. Shaikh S.R., Edidin M.A. 2006. Membranes are not just rafts. Chem. Phys. Lipids. 144(1), 1–3.

    Article  CAS  PubMed  Google Scholar 

  23. Hevonoja T., Pentikainen M.O., Hyvonen M.T., Kovanen P.T., Ala-Korpela M. 2000. Structure of low density lipoprotein (LDL) particles: Basis for understanding molecular changes in modified LDL. Biochim. Biophys. Acta. 1488(3), 189–210.

    Article  CAS  PubMed  Google Scholar 

  24. Ramstedt B., Slotte J.P. 2002. Membrane properties of sphingomyelins. FEBS Lett. 531(1), 33–37.

    Article  CAS  PubMed  Google Scholar 

  25. Holopainen J.M., Metso A.J., Mattila J.P., Jutila A., Kinnunen P.K. 2004. Evidence for the lack of a specific interaction between cholesterol and sphingomyelin. Biophys. J. 86(3), 1510–1520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Falck E., Patra M., Karttunen M., Hyvonen M.T., Vattulainen I. 2004. Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J. 87(2), 1076–1091.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hofsass C., Lindahl E., Edholm O. 2003. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys. J. 84(4), 2192–2206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vainio S., Jansen M., Koivusalo M., Rog T., Karttunen M., Vattulainen I., Ikonen E. 2006. Significance of sterol structural specificity. Desmosterol cannot replace cholesterol in lipid rafts. J. Biol. Chem. 281(1), 348–355.

    Article  CAS  PubMed  Google Scholar 

  29. Patra M. 2005. Lateral pressure profiles in cholesterol-DPPC bilayers. Eur. Biophys. J. 35(1), 79–88.

    Article  CAS  PubMed  Google Scholar 

  30. Niemela P.S., Ollila S., Hyvonen M.T., Karttunen M., Vattulainen I. 2007. Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 3(2), e34.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Cantor R.S. 1997. The lateral pressure profile in membranes: A physical mechanism of general anesthesia. Biochemistry. 36(9), 2339–2344.

    Article  CAS  PubMed  Google Scholar 

  32. Varma R., Mayor S. 1998. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 394(6695), 798–801.

    Article  CAS  PubMed  Google Scholar 

  33. Plowman S.J., Muncke C., Parton R.G., Hancock J.F. 2005. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. USA. 102(43), 15500–15505.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pandit S.A., Jakobsson E., Scott H.L. 2004. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys. J. 87(5), 3312–3322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pandit S.A., Vasudevan S., Chiu S.W., Mashl R.J., Jakobsson E., Scott H.L. 2004. Sphingomyelin-cholesterol domains in phospholipid membranes: Atomistic simulation. Biophys. J. 87(2), 1092–1100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Brown D.A., London E. 1997. Structure of detergentresistant membrane domains: Does phase separation occur in biological membranes? Biochem. Biophys. Res. Comm. 240(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Bozdaganyan.

Additional information

Original Russian Text © M.E. Bozdaganyan, K.V. Shaitan, 2014, published in Biologicheskie Membrany, 2014, Vol. 31, No. 4, pp. 244–251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozdaganyan, M.E., Shaitan, K.V. Raft formation in biological membranes: A molecular dynamics simulation study. Biochem. Moscow Suppl. Ser. A 8, 290–296 (2014). https://doi.org/10.1134/S1990747814040035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747814040035

Keywords

Navigation