Skip to main content
Log in

The Response of the Cell Genome of Endometrial Mesenchymal Stem Cells to the Procedure of Long-Term Cyropreservation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Information about the effect of cryopreservation on cellular functions and the genetic apparatus of cells of differing genesis is not unambiguous and is in the process of accumulation. This work is aimed at studying the effect of long-term storage (7 years) in the frozen state of human endometrial mesenchymal stem cells (eMSCs) on the stability of their genome in vitro. The results showed destabilization of the karyotype structure in the descendants of cells after their thawing, namely, aneupolyploidization of the chromosome set; increased fragility of chromosomes, resulting in a huge pool of aberrant chromosomes; and impaired condensation in homologues. Chromosomal breakdowns affecting the centromeric regions were in some cases accompanied by the preservation of genetic material in the form of independent chromosomes. Almost all chromosomes of the set were involved in the process of destabilization of the eMSC cell genome. It has been shown that the procedure of long-term cryopreservation can become an inducer of premature cellular aging of eMSCs after their thawing. Comparison of the data obtained with the results of karyotyping of transformed Chinese hamster cells that underwent a similar procedure led to the conclusion that cryopreservation for biological systems can be a stress that induces heterogeneous genetic defects at the karyotype level. The response of the genome of cells of different origin to the same conditions of cryopreservation may differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Antebi, B., Asher, A.M., Rodriguez, L.A.II, Moore, R.K., Mohammadipoor, A., and Cancio, L.C., Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period, J. Transl. Med., 2019, vol. 17, p. 297. https://doi.org/10.1186/s12967-019-2038-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Astrelina, T.A., Gomzyakov, A.E., Kobzeva, I.V., Karpova, E.E., Kruglova, Ya.A., Skorobogatova, E.V., Balashov, D.N., Knyazev, O.V., and Yakovleva, M.V., Evaluation of the quality and safety of cryopreserved multipotent placental mesenchymal stromal cells in clinical practice, Geny Kletki, 2013, no. 4, p. 82.

  3. Bahsoun, S., Coopman, K., and Akam, E.C., The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: a systematic review, J. Transl. Med., 2019, vol. 17, p. 397. https://doi.org/10.1186/s12967-019-02136-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. de-Lima Prata, K., de Santis, G.C., Orellana, M.D., Palma, P.V., Brassesco, M.S., and Covas, D.T., Cryopreservation of umbilical cord mesenchymal cells in xeno-free conditions, Cytotherapy, 2012, vol. 14, p. 694.

    Article  CAS  PubMed  Google Scholar 

  5. Diaferia, G.R., Dessi, S.S., Deblasio, P., and Biunno, I., Is stem cell chromosomes stability affected by cryopreservation conditions?, Cytotechnology, 2008, vol. 58, p. 11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duarte, D.M., Cornélio, D.A., Corado, C., Medeiros, V.K., de Araujo, L.A., Cavalvanti, G.B.J., and de Medeiros, S.R., Chromosomal characterization of cryopreserved mesenchymal stem cells from the human subendothelium umbilical cord vein, Regen. Med., 2012, vol. 7, p. 147.

    Article  CAS  PubMed  Google Scholar 

  7. Grinchuk, T.M. and Shilina, M.A., Effect of cryopreservation on the stability of the karyotype of transformed Chinese hamster lung fibroblasts in vitro, Tsitologiya, 2021, vol. 63, no. 1, p. 63.

    Google Scholar 

  8. Heng, B.C., Kuleshova, L.L., Bested, S.M., Liu, H., and Cao, T., The cryopreservation of human embryonic stem cells, Biotechnol. Appl. Biochem., 2005, vol. 41, p. 97.

    Article  CAS  PubMed  Google Scholar 

  9. Heng, H.H., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., Ye, K.J., Bremer, S.W., Chowdhury, S.K., and Ye, C.J., Karyotype heterogeneity and unclassified chromosomal abnormalities, Cytogenet. Genome Res., 2013, vol. 139, p. 144.

    Article  CAS  PubMed  Google Scholar 

  10. Hiyama, E. and Hiyama, K., Telomere and telomerase, Br. J. Cancer, 2007, vol. 96, p. 1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imaizumi, K., Nishishita, N., Muramatsu, M., Yamamo-to, T., Takenaka, C., Kawamata, S., Kobayashi, K., Nishikawa, S., and Akuta, T., A simple and highly effective method for slow-freezing human pluripotent stem cells using dimethyl sulfoxide, hydroxyethyl starch and ethylene glycol, PLoS One, 2014, vol. 9, p. e88696. https://doi.org/10.1371/journal.pone.0088696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mamaeva, S.E., Atlas of Chromosomes: Permanent Cell Lines of Human and Animals, Moscow: Nauchniy mir, 2002.

  13. Matidi, M. and Bhonde, R., Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells, Arch. Toxicol., 2011, vol. 86, p. 651.

    Google Scholar 

  14. McGranahan, N., Burrell, R.A., Endesfelder, D., Novelli, M.R., and Swanton, C., Cancer chromosomal instability: therapeutic and diagnostic challenges, EMBO Rep., 2012, vol. 13, p. 528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitelman, F., An International System for Human Cytogenetic Nomenclature: Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature, S. Karger Publishers, Basel, Switzerland, 1995.

    Google Scholar 

  16. Odintsova, I.A., Rusakova, S.E., Schmidt, A.A., and Timoshkova, Yu.L., Cryopreservation of germ cells: history and current state of the issue, Geny Kletki, 2021, no. 3, p. 44.

  17. Passerini, V., Ozeri-Galai, E., de Pagter, M.S., Donnelly, N., Schmalbrock, S., Kloosterman, W.P., Kerem, B., and Storchová, Z., The presence of extra chromosomes leads to genomic instability, Nat. Commun., 2016, vol. 7, p. 10754. https://doi.org/10.1038/ncomms10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pera, M.F., Reubinoff, B., and Trounson, A., Human embryonic stem cells, J. Cell Sci., 2000, vol. 113, p. 5.

    Article  CAS  PubMed  Google Scholar 

  19. Polchow, B., Kebbel, K., Schmiedeknecht, G., Reichardt, A., Henrich, W., Hetzer, R., and Lueders, C., Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks, J. Transl. Med., 2012, vol. 10, p. 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Polyanskaya, G.G., Semenova, E.G., and Shubin, N.A., Cytological variations in the Indian muntjac skin fibroblast cell line as a result of cryoconservation, Tsytologiya, 1990, vol. 32, no. 3, p. 256.

    CAS  Google Scholar 

  21. Rangel, N., Forero-Castro, M., and Rondón-Lagos, M., New insights in the cytogenetic practice: Karyotypic chaos, nonclonal chromosomal alterations and chromosomal instability in human cancer and therapy response, Genes (Basel), 2017, vol. 8, p. 155.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ray, M. and Mohandas, T., Proposed banding nomenclature for the Chinese hamster chromosomes (Cricetulus gruseus), Cytogenet. Cell Genet., 1975, vol. 16, p. 83.

    Google Scholar 

  23. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro, Nat. Biotechnol., 2000, vol. 18, p. 399.

    Article  CAS  PubMed  Google Scholar 

  24. Semenova, E.G., Unscheduled DNA synthesis in cultured cells after cryopreservation, Kriobiologiya, 1988, no. 1, p. 17.

  25. Shorokhova, M.A. and Grinchuk, T.M., Stability of the human endometrial mesenchymal stem cells karyotype in vitro, Cell Tissue Biol., 2021, vol. 63, no. 5, p. 72.

    Google Scholar 

  26. Tan, Z., Chan, Y.J.A., Chua, Y.J.K., Rutledge, S.D., Pavelka, N., Cimini, D., and Rancati, G., Environmental stresses induce karyotypic instability in colorectal cancer cells, Mol. Biol. Cell, 2019, vol. 30, p. 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, D.Q., Wang, Q., Burkhardt, B.R., Litherland, S.A., Atkinson, M.A., and Yang, L.J., In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation, Am. J. Stem Cells, 2012, vol. 1, p. 114.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zemelko, V.I., Grinchuk, T.M., Domnina, A.P., Artsybasheva, I.V., Zenin, V.V., Kirsanov, A.A., Beachevaya, N.K., Korsak, V.S., and Nikolsky, N.N., Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells, Cell Tissue Biol, 2012, vol. 6, no. 1, p. 1.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation and the St. Petersburg Science Foundation, project no. 22-24-20122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shorokhova.

Ethics declarations

The authors declare that they have no conflicts of interest.

The authors did not conduct experiments involving animals or human beings.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: eMSC—endometrial mesenchymal stem cell; PBS—phosphate buffered saline; SA-β-Gal—β-galactosidase associated with aging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinchuk, T.M., Shorokhova, M.A. & Pugovkina, N.A. The Response of the Cell Genome of Endometrial Mesenchymal Stem Cells to the Procedure of Long-Term Cyropreservation. Cell Tiss. Biol. 17, 627–638 (2023). https://doi.org/10.1134/S1990519X2306007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X2306007X

Keywords:

Navigation