Skip to main content
Log in

The Application of CRISPR/Cas9 Technology in Mice Zygotes to Obtain Duplications, Deletions and Inversions Affects Karyotype Stability

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In modern molecular and cellular biology, CRISPR/Cas9 technology has been widely used for targeted modification of human and animal genomes. In this work, using molecular-cytogenetics methods, we have analyzed the karyotype in 18 mouse fibroblast cell lines (MFs), whose genome had a Cntn6 gene edited with CRISPR/Cas9. The modifications of Cntn6 gene were 2374-kb duplications, 1137-kb deletions, and inversions of similar size. In addition, cytogenetic analysis was performed for five control lines of mouse embryonic fibroblasts (MEFs) carrying an intact Cntn6 gene allele. The study showed the presence of a high level of polyploidy for MF lines that were heterozygous for Cntn6 gene inversions and homozygous and heterozygous for Cntn6 gene duplications (20–46%), as well as monosomy (1–9%) and trisomy (1–8%) for chromosome 6. It is important to note that no trisomy was detected in MEF lines carrying a deletion and duplication of Cntn6 gene in the compound, and the proportion of polyploid cells was minimal (1.5–5.7%). Thus, the data obtained indicate the destabilization of the karyotype of cell lines that underwent genome editing by CRISPR/Cas9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bolton, H., Graham, S.J.L., Niels, V.D.A., Kumar, P., Theunis, K., Gallardo, E.F., Voet, T., and Zernicka-Goetz, M., Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential, Nat. Commun., 2016, vol. 7, p. 11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boroviak, K., Doe, B., Banerjee, R., Yang, F., and Bradley, A., Chromosome engineering in zygotes with CRISPR/Cas9, Genesis, 2016, vol. 54, p. 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ca, L., Fisher, A.L., Huang, H., and Xie, Z., CRISPR-mediated genome editing and human diseases, Genes Dis., 2016, vol. 3, p. 244.

    Article  Google Scholar 

  4. Canver, M.C., Bauer, D.E., Dass, A., Yien, Y.Y., Chung, J., Masuda, T., Maeda, T., Paw, B.H., and Orkin, S.H., Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells, J. Biol. Chem., 2017, vol. 292, p. 2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cleveland, D.W., Mao, Y., and Sullivan, K.F., Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling, Cell, 2003, vol. 112, p. 407.

    Article  CAS  PubMed  Google Scholar 

  6. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F., Multiplex genome engineering using CRISPR/Cas systems, Science, 2013, vol. 339, p. 819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cox, D.B.T., Platt, R.D., and Zhang, F., Therapeutic genome editing: prospects and challenges, Nat. Ved., 2015, vol. 21, p. 121.

    CAS  Google Scholar 

  8. Crasta, K., Ganem, N.J., Dagher, R., Lantermann, A.B., Ivanova, E.V., Pan, Y., Nezi, L., Protopopov, A., Chowdhury, D., and Pellman, D., DNA breaks and chromosome pulverization from errors in mitosis, Nature, 2012, vol. 482, p. 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujii, W., Kawasaki, K., Sugiura, K., and Naito, K., Efficient generation of large-scale genome-modified mice using gRNA and Cas9 endonuclease, Nucleic Acids Res., 2013, vol. 41, p. e187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goepfert, T.M., McCarthy, M., Kittrell, F.S., Stephens, C., Ullrich, R.L., Brinkley, B.R., and Medina, D., Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells, FASEB J., 2000, vol. 14, p. 2221.

    Article  CAS  PubMed  Google Scholar 

  11. Hara, S., Kato, T., Goto, Y., Kubota, S., Tamano, M., Terao, M., and Takada, S., Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system, J. Reprod. Dev., 2016, vol. 62, p. 531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G., and Zhang, F., DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 2013, vol. 31, p. 827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsu, P.D., Lander, E.S., and Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering, Cell, 2014, vol. 157, p. 1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hussain, W., Mahmoodb, T., Hussain, J., Alid, N., Shahe, T., Qayyumf, S., and Khang, I., CRISPR/Cas system: a game changing genome editing technology, to treat human genetic diseases, Gene, 2019, vol. 685, p. 70.

    Article  CAS  PubMed  Google Scholar 

  15. Janssen, A., van der Burg, M., Szuhai, K., Kops, G.J., and Medema, R.H., Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations, Science, 2011, vol. 333, p. 1895.

    Article  CAS  PubMed  Google Scholar 

  16. Kalitsis, P., Fowler, K.J., Griffiths, B., Earle, E., Chow, C.W., Jamsen, K., and Choo, K.H.A., Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice, Genes Chromosomes Cancer, 2005, vol. 44, p. 29.

    Article  CAS  PubMed  Google Scholar 

  17. Korablev, A.N., Serova, I.A., and Serov, O.L., Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology, BMC Genet., 2017, vol. 18, p. 112.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kosicki, M., Tomberg, K., and Bradley, R., Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol., 2018, vol. 36, p. 765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kraft, K., Geuer, S., Will, A.J., Chan, W.L., Paliou, C., Borschiwer, M., Harabula, I., Wittler, L., Franke, M., Ibrahim, D.M., Kragesteen, B.K., Spielmann, M., Mundlos, S., Lupianez, D.G., and Andrey, G., Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice, Cell Rep., 2015, vol. 10, p. 833.

    Article  CAS  PubMed  Google Scholar 

  20. Lin, S.R., Yang, H.C., Kuo, Yi.T., Sung, K.C., Lin, Y.Y., Wang, H.Y., Wang, C.C., Shen, Y.C., Wu, F.Y., Kao, J.H., Chen, D.S., and Chen, P.J., The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo, Mol. Ther. Nucleic Acids, 2014, vol. 3, p. e186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, X., Wu, H., Loring, J., Hormuzdi, S., Disteche, C.M., Bornstein, P., and Jaenisch, R., Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission, Dev. Dyn., 1997, vol. 209, p. 85.

    Article  CAS  PubMed  Google Scholar 

  22. Mehravar, M., Shirazi, A., Nazari, M., and Banan, M., Mosaicism in CRISPR/Cas9-mediated genome editing, Dev. Biol., 2019, vol. 445, p. 156.

    Article  CAS  PubMed  Google Scholar 

  23. Menzorov, A., Pristyazhnyuk, I., Kizilova, H., Yunusova, A., Battulin, N., Zhelezova, A., Golubitsa, A., and Serov, O.L., Cytogenetic analysis and Dlk1-Dio3 locus epigenetic status of mouse embryonic stem cells during early passages, Cytotechnology, 2016, vol. 68, p. 61.

    Article  PubMed  Google Scholar 

  24. Minina, Yu.M., Zhdanova, N.S., Shilov, A.G., Tolkunova, E.N., Liskovykh, M.A., andTomilin, A.N., Chromosomal instability of mouse pluripotent cells cultured in vitro, Cell Tissue Biol., 2010, vol. 4, p. 223.

    Article  Google Scholar 

  25. Mollanoori, H., Shahraki, H., Rahmati, Y., and Teimourian, S., CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment, Hum. Immunol., 2018, vol. 79, p. 876.

    Article  CAS  PubMed  Google Scholar 

  26. Pankowicz, F.P., Barzi, M., Legras, X., Hubert, L., Mi, T., Tomolonis, J.A., Ravishankar, M., Sun, Q., Yang, D., Borowiak, M., Sumazin, P., Elsea, S.H., Bissig-Choisat, B., and Bissig, K.D., Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia, Nat. Commun., 2016, vol. 7, p. 1.

    Article  Google Scholar 

  27. Podryadchikova, O.L., Pristyazhnyuk, I.E., Matveeva, N.M., and Serov, O.L., FISH analysis of regional replication of homologous chromosomes in hybrid cells obtained by fusion of embryonic stem cells with somatic cells, Tsitologiya, 2009, vol. 51, p. 500.

    Google Scholar 

  28. Pristyazhnyuk, I.E., Minina, J., Korablev, A., Serova, I., Fishman, V., Gridina, M., Rozhdestvensky, T.S., Gubar, L., Skryabin, B.V., and Serov, O.L., Time origin and structural analysis of the induced CRISPR/cas9 megabase-sized deletions and duplications involving the Cntn6 gene in mice, Sci. Rep., 2019, vol. 9, p. 14161.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sakuma, T., Masaki, K., Abe-Chayama, H., Mochida, K., Yamamoto, T., and Chayama, K., Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus, Genes Cells, 2016, vol. 21, p. 1253.

    Article  CAS  PubMed  Google Scholar 

  30. Santaguida, S., Richardson, A., Iyer, D.R., M’Saad, O., Zasadil, L., Knouse, K.A., Wong, Y.L., Rhind, N., Desai, A., and Amon, A., Chromosome mis-segregation generates cell cycle-arrested cells with complex karyotypes that are eliminated by the immune system, Dev. Cell, 2017, vol. 41, p. 638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singla, S., Iwamoto-Stohl, L.K., Zhu, M., and Zernicka-Goetz, M., Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism, Nat. Commun., 2020, vol. 11, p. 2958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Telenius, H., Pelmear, A.H., Tunnacliffe, A., Carter, N.P., Behmel, A., Ferguson-Smith, M.A., Nordenskjold, M., Pfragner, R., and Ponder, B.A., Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes, Genes Chromosomes Cancer, 1992, vol. 4, p. 226.

    Article  Google Scholar 

  33. Thompson, S.L. and Compton, D.A., Chromosomes and cancer cells, Chromosome Res., 2011, vol. 19, p. 433.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vetchinova, A.S., Simonova, V.V, Novosadova, E.V., Manuilova, E.S., Nenasheva, V.V., Tarantul, V.Z., Grivennikov, I.A., Khaspekov, L.G., and Illarioshkin, S.N., Cytogenetic analysis of the results of genome editing on the cell model of Parkinson’s disease, Bull. Exp. Biol. Med., 2018, vol. 165, p. 355.

    Article  Google Scholar 

  35. Yang, E., O’Brien, P.C.M., and Ferguson-Smith, M.A., Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting, Chromosome Res., 2000, vol. 8, p. 219.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, L., Jia, R., Palange, N.J., Satheka, A.C., Togo, J., An, Y., Humphrey, M., Ban, L., Ji, Y., Jin, H., Feng, X., and Zheng, Y., Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9, PLoS One, 2015, vol. 10, p. e0120396.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhen, S., Lu, J.J., Wang, L.J., Sun, X.M., Zhang, J.Q., Li, X., Luo, W.J., and Zhao, L., In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line, Transl. Oncol., 2016, vol. 9, p. 498.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that they have no conflicts of interest. This work was supported by the Russian Foundation for Basic Research (project no. 20-04-00463А) and budget project no.FWNR-2022-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Minina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All procedures were carried out in accordance with an EU Council Regulation (November 24, 1966, 86/609/EEC) and approved by the Bioethics Commission of the Institute of Cytology and Genetics (authorization no. 24 of October 24, 2014).

Additional information

Translated by I. Fridlyanskaya

Abbreviations: BSA—bovine serum albumin; CRISPR/Cas9—clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9; FISH—fluorescent in situ hybridization; PCR—polymerase chain reaction; MEF—mouse embryonic fibroblast; MF—mouse fibroblast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minina, Y.M., Soroka, A.B., Karamysheva, T.V. et al. The Application of CRISPR/Cas9 Technology in Mice Zygotes to Obtain Duplications, Deletions and Inversions Affects Karyotype Stability. Cell Tiss. Biol. 17, 557–564 (2023). https://doi.org/10.1134/S1990519X23050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23050085

Keywords:

Navigation