Skip to main content
Log in

Application of 3D Scaffolds in Tissue Engineering

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

Three-dimensional (3D) scaffolds are often used in tissue engineering applications to produce an environment that is conducive to the integration of cells or growth factors to repair or replace damaged tissues or organs. These scaffolds are utilized to mimic the microenvironment seen in vivo, where cells interact and respond to mechanical cues from their three-dimensional surroundings. Consequently, cellular response and fate depend greatly on the material properties of scaffolds. These three-dimensional scaffolds' porous, networked pore structures enable the movement of nutrients, oxygen, and waste. This article looks at the many manufacturing procedures (such as conventional and rapid prototyping techniques) used to create 3D scaffolds with variable pore sizes and porosities. The various methods for determining pore size and porosity will also be covered. It has also been investigated if scaffolds with graded porosity may more accurately mimic the in vivo situation in which cells are exposed to layers of various tissues with changing characteristics. Following a look at the extracellular matrix, nature’s own scaffold, the ability of scaffold pore size and porosity to affect biological responses and mechanical qualities will also be investigated. We will talk about the problems with the current ways of building scaffolds for tissue engineering applications and offer some new and exciting alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abdolmaleki, A., Asadi, A., Taghizadeh, L., and Parsi, P.S., The role of neural tissue engineering in the repair of nerve lesions, Neurosci. J. Shefaye Khatam., 2020a, vol. 8, pp. 80–96.

    Article  Google Scholar 

  2. Abdolmaleki, A., Zahri, S., Asadi, A., and Wassersug, R., Role of tissue engineering and regenerative medicine in treatment of sport injuries, Trauma Monthly, 2020b, vol. 25, pp. 106–112.

    Google Scholar 

  3. Aliabouzar, M., Lee, S., Zhou, X., Zhang, G.L., and Sarkar, K., Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells, Biotechnol. Bioeng., 2018, vol. 115, pp. 495–506.

    Article  CAS  PubMed  Google Scholar 

  4. Anstey, A., Chang, E., Kim, E.S., Rizvi, A., Kakroodi, A.R., Park, C.B., et al., Nanofibrillated polymer systems: design, application, and current state of the art, Prog. Polym. Sci., 2021, vol. 113, p. 101346.

    Article  CAS  Google Scholar 

  5. Asadi, A., Zahri, S., and Abdolmaleki, A., Biosynthesis, characterization and evaluation of the supportive properties and biocompatibility of DBM nanoparticles on a tissue-engineered nerve conduit from decellularized sciatic nerve, Regener. Ther., 2020, vol. 14, pp. 315–321.

    Article  Google Scholar 

  6. Atala, A., Lanza, R., and Lanza, R.P., Methods of Tissue Engineering, Gulf Professional Publishing, 2002.

    Google Scholar 

  7. Auger, F.A., Gibot, L., and Lacroix, D., The pivotal role of vascularization in tissue engineering, Annu. Rev. Biomed. Eng., 2013, vol. 15, pp.177–200.

    Article  CAS  PubMed  Google Scholar 

  8. Bose, S., Vahabzadeh, S., and Bandyopadhyay, A., Bone tissue engineering using 3D printing, Mater. Today, 2013, vol. 16, pp. 496–504.

    Article  CAS  Google Scholar 

  9. Cascone, M.G., Barbani, N., Cristallini, C., Giusti, P., Ciardelli, G., and Lazzeri, L., Bioartificial polymeric materials based on polysaccharides, J. Biomater. Sci. Polym., 2001, vol. 12, pp. 267–281.

    Article  CAS  Google Scholar 

  10. Cassidy, J.W., Nanotechnology in the regeneration of complex tissues, Bone Tiss. Regener. Insights, 2014, vol. 5, p. S12331.

    Article  Google Scholar 

  11. Chocholata, P., Kulda, V., and Babuska, V. Fabrication of scaffolds for bone-tissue regeneration, Materials, 2019, vol. 12, p. 568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ciardelli, G., Chiono, V., Vozzi, G., Pracella, M., Ahluwalia, A., Barbani, N., Cristallini, C., and Giusti, P. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications, Biomacromolecules, 2005, vol. 6, pp. 1961–1976.

    Article  CAS  PubMed  Google Scholar 

  13. Codrea, C.I., Croitoru, A.M., Baciu, C.C., Melinescu, A., Ficai, D., Fruth, V., and Ficai A., Advances in osteoporotic bone tissue engineering, J. Clin. Med., 2021, vol. 10, p. 253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui, X., Boland, T., DD’Lima, D., and Lotz, M., Thermal inkjet printing in tissue engineering and regenerative medicine, Recent Pat. Drug Delivery Formulation, 2012, vol. 6, pp. 149–155.

    Article  CAS  Google Scholar 

  15. Do, A.V., Khorsand, B., Geary, S.M., and Salem, A.K., 3D printing of scaffolds for tissue regeneration applications, Adv. Healthcare Mater., 2015, vol. 4, pp. 1742–1762.

    Article  CAS  Google Scholar 

  16. Geckil, H., Xu, F., Zhang, X., Moon, S., and Demirci, U., Engineering hydrogels as extracellular matrix mimics, Nanomedicine, 2010, vol. 5, pp. 469–484.

    Article  CAS  PubMed  Google Scholar 

  17. Gentile, P., Chiono, V., Carmagnola, I., and Hatton, P.V., An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering, Int. J. Mol. Sci., 2014, vol. 15, pp. 3640–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Griffith, L.G., Emerging design principles in biomaterials and scaffolds for tissue engineering, Ann N.Y. Acad. Sci., 2002, vol. 961, pp. 83–95.

    Article  CAS  PubMed  Google Scholar 

  19. Gustafsson, L., Tasiopoulos, C.P., Jansson, R., Kvick, M., Duursma, T., Gasser, T.C., et al., Recombinant spider silk forms tough and elastic nanomembranes that are protein-permeable and support cell attachment and growth, Adv. Funct. Mater., 2020, vol. 30, p. 2002982.

    Article  CAS  Google Scholar 

  20. Haider, A., Haider, S., Kummara, M., and Kamal, T., Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: a technical and statistical review, J. Saudi Chem. Soc., 2020, vol. 24, pp. 186–215.

    Article  CAS  Google Scholar 

  21. Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F., and Ding, J., Mesenchymal stem cells for regenerative medicine, Cells, 2019, vol. 8, p. 886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heidary, R. and Mahdavi, M., Regenerative medicine in organ and tissue transplantation: shortly and practically achievable?, Int. J. Organ Transplant. Med., 2015, vol. 6, pp. 93–98.

    Google Scholar 

  23. Hollister, S.J., Porous scaffold design for tissue engineering, Nat. Mater., 2005, vol. 4, pp. 518–524.

    Article  CAS  PubMed  Google Scholar 

  24. Ikada, Y., Challenges in tissue engineering, J. R. Soc. Interface, 2006, vol. 3, pp. 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jayakumar, R. and Nair, S., Biomedical applications of polymeric nanofibers, Adv. Polym. Sci., 2012, vol. 246, vol. 3, pp. 589–601.

  26. Johnstone, B. and Yoo, J.U., Autologous mesenchymal progenitor cells in articular cartilage repair, Clin. Orthop. Relat. Res., 1999, vol. 367, pp. S156–S162.

  27. Jonathan, M., Tissue-engineered skin products, in Principles of Tissue Engineering 2020, 5th ed., pp. 1483–1497.

  28. Kajihara, M., Sugie, T., Maeda, H., Sano, A., Fujioka, K., Urabe, Y., et al., Novel drug delivery device using silicone: controlled release of insoluble drugs or two kinds of water-soluble drugs, Chem. Pharm. Bull., 2003, vol. 51, pp. 15–19.

    Article  CAS  Google Scholar 

  29. Kalogeris, T., Baines, C.P., Krenz, M., and Korthuis, R.J., Cell biology of ischemia/reperfusion injury, Int. Rev. Cell Mol. Biol., 2012, vol. 298, pp. 229–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khil, M.S., Cha, D.I., Kim, H.Y., Kim, I.S., and Bhattarai, N., Electrospun nanofibrous polyurethane membrane as wound dressing, J. Biomed. Mater. Res., 2003, vol. 67, pp. 675–679.

    Article  Google Scholar 

  31. Kluge, J.A. and Mauck, R.L, Synthetic/biopolymer nanofibrous composites as dynamic tissue engineering scaffolds, Biomed. Appl. Polym. Nanofibers, 2011, vol. 246, pp. 101–130.

    Article  Google Scholar 

  32. Koch, L., Deiwick, A., Schlie, S., Michael, S., Gruene, M., et al., Skin tissue generation by laser cell printing, Biotechnol. Bioeng., 2012, vol. 109, pp. 1855–6183.

    Article  CAS  PubMed  Google Scholar 

  33. Lai, Y., Asthana. A., and Kisaalita, W.S., Biomarkers for simplifying HTS 3D cell culture platforms for drug discovery: the case for cytokines, Drug Discovery Today, 2011, vol. 16, pp. 293–297.

    Article  CAS  PubMed  Google Scholar 

  34. Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., and Mülhaupt, R., Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques, J. Mater. Sci., 2002, vol. 37, pp. 3107–3116.

    Article  CAS  Google Scholar 

  35. Langer, R. and Vacanti, J.P., Tissue engineering, Science, 1993, vol. 260, pp. 920–926.

    Article  CAS  PubMed  Google Scholar 

  36. Lee, G.Y., Kenny, P.A., Lee, E.H., and Bissell, M.J., Three-dimensional culture models of normal and malignant breast epithelial cells, Nat. Methods, 2007, vol. 4, pp. 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, Z., Du, T., Ruan, C., and Niu, X., Bioinspired mineralized collagen scaffolds for bone tissue engineering, Bioactive Mater., 2021, vol. 6, pp. 1491–511.

    Article  CAS  Google Scholar 

  38. Lutolf, M. and Hubbell, J., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol., 2005, vol. 23, pp. 47–55.

    Article  CAS  PubMed  Google Scholar 

  39. Lysaght, M.J. and Reyes, J., The growth of tissue engineering, Tissue Eng., 2001, vol. 7, pp. 485–493.

    Article  CAS  PubMed  Google Scholar 

  40. Ma, P. and Elisseeff, J., Scaffolding in tissue engineering, Mater. Today, 2004, vol. 7, pp. 30–40.

    Article  CAS  Google Scholar 

  41. Ma, P.X. and Elisseeff, J., Scaffolding in Tissue Engineering, CRC Press, 2005.

    Book  Google Scholar 

  42. Mabrouk, M., Beherei, H.H., and Das, D.B., Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering, Mater. Sci. Eng., 2020, vol. 110, p. 110716.

    Article  CAS  Google Scholar 

  43. Malda, J., Woodfield, T., Van, D.V.F., Kooy, F., Martens, D., Tramper, J., et al., The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs, Biomaterials, 2004, vol. 25, pp. 5773–5780.

    Article  CAS  PubMed  Google Scholar 

  44. Marro, A., Bandukwala, T., and Mak, W., Three-dimensional printing and medical imaging: a review of the methods and applications, Curr. Probl. Diagn. Rad., 2016, vol. 45, pp. 2–9.

    Article  Google Scholar 

  45. Mathur, A., Ma, Z., Loskill, P., Jeeawoody, S., and Healy, K.E., In vitro cardiac tissue models: current status and future prospects, Adv. Drug Delivery Rev., 2016, vol. 96, pp. 203–213.

    Article  CAS  Google Scholar 

  46. Melchels, F., Wiggenhauser, P., Hutmacher, D., and Schantz, J.T., CAD/CAM-assisted breast reconstruction following a tissue engineering approach, in The 21st Annual Australasian Society Biomaterials Tissue Engineering Conference, April 27–29, 2011. http://www.conferencequeenstown.co.nz/asbte2011/.

  47. Mertsching, H., Schanz, J., Steger, V., Schandar, M., Schenk, M., Hansmann, J., et al., Generation and transplantation of an autologous vascularized bioartificial human tissue, Transplantation, 2009, vol. 88, pp. 203–210.

    Article  PubMed  Google Scholar 

  48. Nam, Y.S. and Park, T.G., Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation, J. Biomed. Mater. Res., 1999, vol. 47, pp. 8–17.

    Article  CAS  PubMed  Google Scholar 

  49. Nerem, R.M., Tissue engineering: the hope, the hype, and the future, Tissue Eng., 2006, vol. 12, pp. 1143–1150.

    Article  CAS  PubMed  Google Scholar 

  50. Ng, K.W., Torzilli, P.A., Warren, R.F., and Maher, S.A., Characterization of a macroporous polyvinyl alcohol scaffold for the repair of focal articular cartilage defects, J. Tissue Eng. Regener. Med., 2014, vol. 8, pp. 164–168.

    Article  CAS  Google Scholar 

  51. Okita, K., Ichisaka, T., and Yamanaka, S., Generation of germline-competent induced pluripotent stem cells, Nature, 2007, vol. 448, pp. 313–317.

    Article  CAS  PubMed  Google Scholar 

  52. Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., et al., Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart, Nat. Med., 2008, vol. 14, pp. 213–221.

    Article  CAS  PubMed  Google Scholar 

  53. Pantea, M., Totan, A.R., Imre, M., Petre, A.E., Țâncu, A.M.C., Tudos, C., et al., Biochemical interaction between materials used for interim prosthetic restorations and saliva, Materials, 2021, vol. 15, p. 226.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Park, J.H., Schwartz, Z., Olivares, R., Boyan, B.D., and Tannenbaum, R., Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes, Langmuir, 2011, vol. 27, pp. 5976–5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pomeroy, J.E., Helfer, A., and Bursac, N., Biomaterializing the promise of cardiac tissue engineering, Biotechnol. Adv., 2020, vol. 42, p. 107353.

    Article  CAS  PubMed  Google Scholar 

  56. Prasopthum, A., Shakesheff, K.M., and Yang, J., Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography, Biofabrication, 2018, vol. 10, p. 025002.

    Article  PubMed  Google Scholar 

  57. Principles of Tissue Engineering, Langer, R., Lanza, R., Langer, R.S., and Vacanti, J.P., Eds., Academic Press, 2000.

  58. Qasim, M., Haq, F., Kang, M.H., and Kim, J.H., 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration, Int. J. Nanomed., 2019, vol. 14, pp. 1311–1333.

    Article  CAS  Google Scholar 

  59. Roshancheshm, S., Asadi, A., Khoshnazar, S.M., Abdolmaleki, A., Khudhur, Z.O., and Smail, S.W., Application of natural and modified exosomes a drug delivery system, Nanomed. J., 2022, vol. 3, pp. 192–204.

    Google Scholar 

  60. Samsonraj, R.M., Raghunath, M., Nurcombe, V., van Hui, J.H.W.A.J., and Cool, S.M., Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine, Stem Cells Transl. Med., 2017, vol. 6, pp. 2173–2185.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Saska, S., Pilatti, L., Blay, A., and Shibli, J.A., Bioresorbable polymers: advanced materials and 4D printing for tissue engineering, Polymer, 2021, vol. 13, p. 563.

    Article  CAS  Google Scholar 

  62. Sharma, P., Kumar, P., Sharma, R., Bhatt, V.D., and Polym Dhot, P., Tissue engineering; current status and futuristic scope, J. Med. Life, 2019, vol. 12, p. 225.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Simmons, P., McElroy, T., and Allen, A.R., A bibliometric review of artificial extracellular matrices based on tissue engineering technology literature: 1990 through 2019, Materials, 2020, vol. 13, p. 2891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Singh, M., Patel, S., and Singh, D., Natural polymer-based hydrogels as scaffolds for tissue engineering, Biol., Mater. Sci. Eng., 2016, pp. 231–260.

  65. Smyth, N.A., Haleem, A.M., Murawski, C.D., Do, H.T., Deland, J.T., and Kennedy, J.G., The effect of platelet-rich plasma on autologous osteochondral transplantation: an in vivo rabbit model, J. Bone Joint Surg. Am., 2013, vol. 95, pp. 2185–2193.

    Article  PubMed  Google Scholar 

  66. Song, H-HG., Rumma, R.T., Ozaki, C.K., Edelman, E.R., and Chen, C.S., Vascular tissue engineering: progress, challenges, and clinical promise, Cell Stem Cell, 2018, vol. 22, pp. 340–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song, Y., Lin, K., He, S., Wang, C., Zhang, S., Li, D., et al., Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin, Int. J. Nanomed., 2018, vol. 13, p. 505.

    Article  CAS  Google Scholar 

  68. Stevens, M.M. and George, J.H., Exploring and engineering the cell surface interface, Science, 2005, vol. 310. pp. 1135–1138.

    Article  CAS  PubMed  Google Scholar 

  69. Stock, U.A., and Vacanti, J.P., Tissue engineering: current state and prospects, Annu. Rev. Med., 2001, vol. 52, pp. 443–451.

    Article  CAS  PubMed  Google Scholar 

  70. Taboas, J., Maddox, R., Krebsbach, P., and Hollister, S. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds, Biomaterials, 2003, vol. 24, pp. 181–194.

    Article  CAS  PubMed  Google Scholar 

  71. Takagi, Y., Tanaka, S., Tomita, S., Akiyama, S., Maki, Y., Yamamoto, T., et al, Preparation of gelatin scaffold and fibroblast cell culture, J. Biorheol., 2017, vol. 31, pp. 2–5.

    Article  Google Scholar 

  72. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, pp. 663–676.

    Article  CAS  PubMed  Google Scholar 

  73. Temenoff, J.S. and Mikos, A.G., Tissue engineering for regeneration of articular cartilage, Biomaterials, 2000, vol. 21, pp. 431–440.

    Article  CAS  PubMed  Google Scholar 

  74. Vacanti, C.A., History of tissue engineering and a glimpse into its future, Tissue Eng., 2006, vol. 12, pp. 1137-4112.

    Article  PubMed  Google Scholar 

  75. Vacanti, J.P. and Langer, R., Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation, Lancet, 1999, vol. 354, pp. S32–S34.

    Article  Google Scholar 

  76. Whiting, P., Kerby, J., da Coffey, P.C.L., and McKernan, R. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic, Philos. Trans. R. Soc. B, 2015, vol. 370, p. 20140375.

    Article  Google Scholar 

  77. Widmer, M.S. and, Mikos, A.G., Fabrication of biodegradable polymer scaffolds for tissue engineering, Front. Tissue Eng., 1998, pp. 107–120.

  78. Wu, J., Herzog, W., and Epstein, M., Modelling of location-and time-dependent deformation of chondrocytes during cartilage loading, J. Biomech., 1999, vol. 32, pp. 563–572.

    Article  CAS  PubMed  Google Scholar 

  79. Yahya, E. B., Amirul, A., HPS, A. K., Olaiya, N. G., Iqbal, M. O., Jummaat, F., et al. Insights into the role of biopolymer aerogel scaffolds in tissue engineering and regenerative medicine, Polymers, 2021, vol. 13, p. 1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu, J., Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering, Biomaterials, 2010, vol. 31, pp. 4639–4656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Mohaghegh Ardabili University for concerning this manuscript.

Funding

The research was funded by University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Abdolmaleki.

Ethics declarations

All authors of this manuscript say that they have no conflicts of interest to disclose. The work did not involve animals or human beings as experimental subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshnazar, S.M., Asadi, A., Roshancheshm, S. et al. Application of 3D Scaffolds in Tissue Engineering. Cell Tiss. Biol. 17, 454–464 (2023). https://doi.org/10.1134/S1990519X23050061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23050061

Keywords:

Navigation