Skip to main content
Log in

Cryoprotective Characteristics of L-Carnosine Dipeptide (Β-Alanyl-L-Histidine)

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Dipeptide (β-alanyl-L-histidine) has been found in significant amounts in muscle and brain mammals, especially in olfactory structures. L-carnosine exhibits many protective effects under the action of various cytotoxic factors on cells. We used slices of the olfactory cortex of rats to study the cryoprotective characteristic of L-carnosine in the process of cryopreservation (CP). Changes were analyzed in the activity of N-methyl-D-aspartate (NMDA) receptors (NMDARs) when registering NMDA potentials caused by electrical stimulation of the lateral of olfactory tract. The brain slices were preincubated with L-carnosine (20 mM) in an artificial cerebral solution, frozen (–10°C), and after prolonged CP (30 days) warmed up to 37°C. Before and after CP, changes were determined in the amplitudes of NMDA potentials. Dipeptide was found to optimize the pH of a freezing solution after CP and retained the activity of NMDARs determined by the amplitude of NMDA potentials. After CP, L-carnosine contributed to the dehydration of excess free water from slices. The dipeptide inhibited the development of glutamate excitotoxicity in brain slices during CP and maintained the normal functioning of NMDARs. The obtained data prove that L-carnosine exhibits the properties of an endogenous cryoprotector in the nervous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bae, O. and Majid, A., Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage, Brain Res., 2023, vol. 1527, p. 246.

    Article  Google Scholar 

  2. Berezhnoy, D., Stvolinsky, S., Lopachev, A., Devyatov, A., Lopacheva, O., Kulikova, O., Abaimov, D., and Fedorova, T., Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions, Amino Acids, 2019, vol. 51, p. 139.

    Article  CAS  PubMed  Google Scholar 

  3. Boldyrev, A., Aldini, G., and Derave, W., Physiology and pathophysiology of carnosine. Physiol. Rev., 2013, vol. 93, p. 1803.

    Article  CAS  PubMed  Google Scholar 

  4. Bonfanti, L., Peretto, P., De, M., and Fasolo, A., Carnosine-related dipeptides in the mammalian brain. Prog. Neurobiol., 1999, vol. 59, p. 333.

    Article  CAS  PubMed  Google Scholar 

  5. De Marchis, S., Modena, C., Peretto, P., Migheli, A., Margolis, F., and Fasolo, A., Carnosine-related dipeptides in neurons and glia. Biochemistry, 2000, vol. 65, p. 824.

    CAS  PubMed  Google Scholar 

  6. Hipkiss, A., Preston, J., Himsworth, D., Worthington, V., Keown, M., Michaelis, J., Lawrence, J., Mateen, A., Allende, L., and Eagles, P., Pluripotent protective effects of carnosine, a naturally occurring dipeptide, Ann. N. Y. Acad. Sci., 1998, vol. 854, p. 37.

    Article  CAS  PubMed  Google Scholar 

  7. Khama-Murad, A., Pavlinova, L., and Mokrushin, A., Neurotropic effect of exogenous L-carnosine in cultured slices of the olfactory cortex from rat brain, Bull. Exp. Biol. Med., 2008, vol. 146, p. 1.

  8. Khama-Murad, A., Mokrushin, A., and Pavlinova, L., Neuroprotective properties of L-carnosine in the brain slices exposed to autoblood in the hemorrhagic stroke model in vitro, Regul. Pept., 2011, vol. 167, p. 65.

    Article  CAS  PubMed  Google Scholar 

  9. Lopachev, A., Lopacheva, O., Akkuratov, E., Stvolinskii, S., and Fedorova, T., Carnosine protects a primary cerebellar cell culture from acute NMDA toxicity, Neurochem. J., 2017, vol. 11, p. 38.

    Article  CAS  Google Scholar 

  10. Lopachev, A., Kazanskaya, R., Khutorova, A., and Fedorova, T., An overview of the pathogenic mechanisms involved in severe cases of COVID-19 infection, and the proposal of salicyl-carnosine as a potential drug for its treatment, Eur. J. Pharmacol., 2020, vol. 886, p. 173457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsumura, K., Hayashi, F., and Nagashima, T., Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR, Commun. Mater., 2021, vol. 2, p. 116.

    Article  Google Scholar 

  12. Mityushov, M., Emelyanov, N., Mokrushin, A., Voiner, I., and Bagaeva, T., The Surviving Slice of the Brain As an Object of Neurophysiological and Neurochemical Research, Leningrad: Science, 1986.

    Google Scholar 

  13. Mokrushin, A., Peptide-dependent mechanisms of neuronal plasticity in the olfactory cortex, Doctoral (Biol.) Dissertation, St. Petersburg: Pavlov Institute of Physiology, Russian Academy of Sciences, 1997.

  14. Mokrushin, A., Effects of deep freezing and rewarming on ionotropic glutamatergic receptor mechanisms in vitro, Bull. Exp. Biol. Med., 2016, vol. 161. p. 28.

    Article  CAS  PubMed  Google Scholar 

  15. Mokrushin, A., Improvement of the acid–base composition of the environment for long-term and reversible cryopreservation of rat brain slices, Cytology, 2022, vol. 64, p. 96.

    Google Scholar 

  16. Mokrushin, A. and Borovikov, S., Device for the study of hypothermic effects on the surviving brain slices of homeotherms, Int. J. Appl. Basic Res., 2017, vol. 2, p. 214.

    Google Scholar 

  17. Mokrushin, A. and Pavlinova, L., Effects of the blood components on the AMPA and NMDA synaptic responses in brain slices in the onset of hemorrhagic stroke, Gen. Physiol. Biophys., 2013, vol. 32, p. 489.

    Article  CAS  PubMed  Google Scholar 

  18. Mokrushin, A. and Plekhanov, A., Immunological identification of endogenous peptides secreted by surviving slices of rat olfactory cortex, Dokl. Biol. Sci., 2001, vol. 378, p. 227.

    Article  CAS  PubMed  Google Scholar 

  19. Ouyang, L., Tian, Y., Bao, Y., Xu, H., Cheng, J., Wang, B., Shen, Y., Chen, Z., and Lyu, J., Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery, Brain Res. Bull., 2016, vol. 124, p. 76.

    Article  CAS  PubMed  Google Scholar 

  20. Pepper, E., Farrell, M., Nord, G., and Finkel, S., Antiglycation effects of carnosine and other compounds on the long-term survival of Escherichia coli, Appl. Environ. Microbiol., 2010, vol. 76, p. 7925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pichugin, Y., Theoretical and Practical Aspects of Modern Cryobiology, Moscow: Nauchno-Tekhn, Tsentr Kriobiol, Anabioz, 2013.

  22. Sassoe-Pognetto, M., Cantino, D., Panzanelli, P., Verdundi, C.L., Giustetto, M., Margolis, F., De, B., and Fasolo, A., Presynaptic co-localization of carnosine and glutamate in olfactory neurons, Neuroreport, 1993, vol. 5, p. 7.

    Article  CAS  PubMed  Google Scholar 

  23. Solana-Manrique, C., Sanz, F., Martínez-Carrión, G., and Paricio, N., Antioxidant and neuroprotective effects of carnosine: therapeutic implications in neurodegenerative diseases, Antioxidants, 2022, vol. 11, p. 848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stvolinsky, S., Fedorova, T., Devyatov, A., Medvedev, O., Belousova, M., Ryzhkov, I., and Tutelyan, V., Neuroprotective effect of carnosine in experimental focal ischemia–reperfusion of the brain, J. Neurol. Psychiatry, 2017, vol. 12, p. 60.

    Google Scholar 

  25. Teufel, M., Saudek, V., Ledig, J., Bernhardt, A., Boularand, S., Carreau, A., Cairns, N., Carter, C., Cowley, D., and Duverger, D. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase, J. Biol. Chem., 2003, vol. 278, p. 6521.

    Article  CAS  PubMed  Google Scholar 

  26. Tiedje, K., Stevens, K., Barnes, S., and Weaver, D., B-alanine as a small molecule neurotransmitter, Neurochem. Int., 2010, vol. 57, p. 177.

    Article  CAS  PubMed  Google Scholar 

  27. Warren, D., Bickler, P., Clark, J., Gregersen, M., Brosnan, H., McKleroy, W., and Gabatto, P., Hypothermia and rewarming injury in hippocampal neurons involves intracellular Ca2+ and glutamate excitotoxicity, Neuroscience, 2012, vol. 207, p. 316.

    Article  CAS  PubMed  Google Scholar 

  28. Zemke, D., Krishnamurthy, R., and Majid, A., Carnosine is neuroprotective in a mouse model of stroke, J. Cereb. Blood Flow Metab., 2005, vol. 25, p. S313.

    Article  Google Scholar 

  29. Zhang, X., Song, L., Cheng, X., Yang, Y., Luan, B., Jia, L., Xu, F., and Zhang, Z., Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model, Eur. J. Pharm., 2011, vol. 667, p. 202.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to G.P. Smirnova for help with the experiments and S.E. Borovikov for technical assistance in setting up and maintaining the electrophysiological setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mokrushin.

Ethics declarations

Conflict of interest. The author declares that he has no conflicts of interest.

Statement on the welfare of animals. In work with animals, all international and national instructions of the Pavlov Institute of Physiology, Russian Academy of Sciences, on the care and use of animals in experiments, as well as ethical recommendations proposed by the Directive of the Council of the European Communities (86/609 EEC), were followed.

Additional information

Abbreviations: ACSP—artificial cerebrospinal solution; CP—cryopreservation; DMSO—dimethylsulfoxide; LOT—lateral olfactory tract; FP—focal potential; AMPA—a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid; AMPAR—AMPA receptor; NMDA—N-methyl-D-aspartate; NMDAR—NMDA receptor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushin, A.A. Cryoprotective Characteristics of L-Carnosine Dipeptide (Β-Alanyl-L-Histidine). Cell Tiss. Biol. 17, 398–405 (2023). https://doi.org/10.1134/S1990519X23040041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23040041

Keywords:

Navigation