Skip to main content
Log in

HARs: History, Functions, and Role in the Evolution and Pathogenesis of Human Diseases

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

It is thought that changes in mechanisms of gene regulation have played the critical role in human evolution, rather than changes in protein-coding sequences. Recent studies have discovered a special class of genome elements, human accelerated regions (HARs). These elements are conserved non-coding DNA sequences of mammals that have been accumulating human-specific mutations throughout the evolution. Starting from their discovery, the actual role of HARs in human evolution has remained unclear, since they are almost exclusively represented by non-coding sequences with no annotations. It is now known that HAR elements are enriched with binding motifs of transcription factors and histone markers of active chromatin. Recent investigations using functional genomics, computational methods, and genetic analysis have demonstrated that many HARs participate in the genetic regulation of development and have made a major contribution to the evolution of the human brain—in particular, the enlargement of the cerebral cortex. Furthermore, there is much evidence that there is relationship between the polymorphisms of HAR sequences and development of various neurological diseases, such as autism spectrum disorders, schizophrenia, and Huntington’s disease. Such functional methods of analysis as massively parallel reporter assay and screenings using the CRISPR system significantly increase the amount of described regulatory elements specific for human beings. Further investigation of HARs and other evolutionary dynamic genome regions might clarify sophisticated evolutionary changes underlying the unique cytoarchitecture and cognitive abilities of the human brain. Here, we have elucidated the approaches to HAR identification in the genome and their role in regulation of gene activity and effect on the evolution of the human brain and reviewed certain pathological effects of mutations in HAR sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Aboitiz, F. and García, R.V., The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective, Brain Res. Brain Res. Rev., 1997, vol. 25, p. 381. https://doi.org/10.1016/s0165-0173(97)00053-2

    Article  CAS  Google Scholar 

  2. Alarcón, M., Abrahams, B.S., Stone, J.L., Duvall, J.A., Perederiy, J.V., Bomar, J.M., Sebat, J., Wigler, M., Martin, C.L., Ledbetter, D.H., Nelson, S.F., Can-tor, R.M., and Geschwind, D.H., Linkage, association, and gene-expression analyses identify CNTNAP2 as an a-utism-susceptibility gene, Am. J. Hum. Genet., 2008, vol. 82, p. 150. https://doi.org/10.1016/j.ajhg.2007.09.005

    Article  CAS  Google Scholar 

  3. Allen, N.J., Bennett, M.L., Foo, L.C., Wang, G.X., Chakraborty, C., Smith, S.J., and Barres, B.A., Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors, Nature, 2012, vol. 486, p. 410. https://doi.org/10.1038/nature11059

    Article  CAS  Google Scholar 

  4. Ashuach, T., Fischer, D.S., Kreimer, A., Ahituv, N., Theis, F.J., and Yosef, N., MPRAnalyze: statistical framework for massively parallel reporter assays, Genome. Biol., 2019, vol. 20, p. 183. https://doi.org/10.1186/s13059-019-1787-z

  5. Atkinson, E.G., Audesse, A.J., Palacios, J.A., Bobo, D.M., Webb, A.E., Ramachandran, S., and Henn, B.M., No evidence for recent selection at FOXP2 among diverse human populations, Cell, 2018, vol. 174, p. 1424. https://doi.org/10.1016/j.cell.2018.06.048

    Article  CAS  Google Scholar 

  6. Bailey, J.A., Gu, Z., Clark, R.A., Reinert, K., Samonte, R.V., Schwartz, S., Adams, M.D., Myers, E.W., Li, P.W., and Eichler, E.E., Recent segmental duplications in the human genome, Science, 2002, vol. 297, p. 1003. https://doi.org/10.1126/science.1072047

    Article  CAS  Google Scholar 

  7. Barnby, G., Abbott, A., Sykes, N., Morris, A., Weeks, D.E., Mott, R., Lamb, J., Bailey, A.J., Monaco, A.P., and International Molecular Genetics Study of Autism Consortium, Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT, Am. J. Hum. Genet., 2005, vol. 76, p. 950. https://doi.org/10.1086/430454

    Article  CAS  Google Scholar 

  8. Betizeau, M., Cortay, V., Patti, D., Pfister, S., Gautier, E., Bellemin-Ménard, A., Afanassieff, M., Huissoud, C., Douglas, R.J., Kennedy, H., and Dehay, C., Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate, Neuron, 2013, vol. 80, p. 442. https://doi.org/10.1016/j.neuron.2013.09.032

    Article  CAS  Google Scholar 

  9. Bhattacharyya, U., Deshpande, S.N., Bhatia, T., and Thelma, B.K., Revisiting schizophrenia from an evolutionary perspective: an association study of recent evolutionary markers and schizophrenia, Schizophr. Bull., 2021, vol. 47, p. 827. https://doi.org/10.1093/schbul/sbaa179

    Article  Google Scholar 

  10. Bird, C.P., Stranger, B.E., Liu, M., Thomas, D.J., Ingle, C.E., Beazley, C., Miller, W., Hurles, M.E., and Dermitzakis, E.T., Fast-evolving noncoding sequences in the human genome, Genome Biol., 2007, vol. 8, p. R118. https://doi.org/10.1186/gb-2007-8-6-r118

    Article  CAS  Google Scholar 

  11. Boyd, J.L., Skove, S.L., Rouanet, J.P., Pilaz, L.J., Bepler, T., Gordân, R., Wray, G.A., and Silver, D.L., Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex, Curr. B-iol., 2015, vol. 25, p. 772. https://doi.org/10.1016/j.cub.2015.01.041

    Article  CAS  Google Scholar 

  12. Bruce, H.A. and Margolis, R.L., FOXP2: novel exons, splice variants, and CAG repeat length stability, Hum. G-enet., 2002, vol. 111, p. 136. https://doi.org/10.1007/s00439-002-0768-5

    Article  CAS  Google Scholar 

  13. Bush, E.C. and Lahn, B.T., A genome-wide screen for noncoding elements important in primate evolution, BMC Evol. Biol., 2008, vol. 8, p. 17. https://doi.org/10.1186/1471-2148-8-17

    Article  CAS  Google Scholar 

  14. Caporale, A.L., Gonda, C.M., and Franchini, L.F., Transcriptional enhancers in the FOXP2 locus underwent accelerated evolution in the human lineage, Mol. Biol. Evol., 2019, vol. 36, p. 2432. https://doi.org/10.1093/molbev/msz173

    Article  CAS  Google Scholar 

  15. Capra, J.A., Erwin, G.D., McKinsey, G., Rubenstein, J.L., and Pollard, K.S., Many human accelerated regions are developmental enhancers, Philos. Trans. R. Soc. London, B, 2013, vol. 368, p. 20130025. https://doi.org/10.1098/rstb.2013.0025

    Article  CAS  Google Scholar 

  16. Chan, Y.F., Marks, M.E., Jones, F.C., Villarreal, G., Shapiro, M.D., Brady, S.D., Southwick, A.M., Absher, D.M., Grimwood, J., Schmutz, J., Myers, R.M., Petrov, D., Jónsson, B., Schluter, D., Bell, M.A., et al., Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer, Science, 2010, vol. 327, p. 302. https://doi.org/10.1126/science.1182213

    Article  CAS  Google Scholar 

  17. Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J.E., Lambert, N., de Marchena, J., Jin, W.L., Vanderhaeghen, P., Ghosh, A., Sassa, T., and Polleux, F., Inhibition of SR-GAP2 function by its human-specific paralogs induces neoteny during spine maturation, Cell, 2012, vol. 149, p. 923. https://doi.org/10.1016/j.cell.2012.03.034

    Article  CAS  Google Scholar 

  18. Consortium, Chimpanzee Sequencing and Analysis. Initial sequence of the chimpanzee genome and comparison with the human genome, Nature. 2005, vol. 437, p. 69. https://doi.org/10.1038/nature04072

  19. Cooper, K.L., Sears, K.E., Uygur, A., Maier, J., Baczkowski, K.S., Brosnahan, M., Antczak, D., Skidmore, J.A., and Tabin, C.J., Patterning and post-patterning modes of evolutionary digit loss in mammals, Nature, 2014, vol. 511, p. 41.https://doi.org/10.1038/nature13496

    Article  CAS  Google Scholar 

  20. Cretekos, C.J., Wang, Y., Green, E.D., Martin, J.F., Rasweiler, J.J., and Behringer, R.R., Regulatory divergence modifies limb length between mammals, Genes Dev., 2008, vol. 22, p. 141. https://doi.org/10.1101/gad.1620408

    Article  CAS  Google Scholar 

  21. Cubelos, B., Briz, C.G., Esteban-Ortega, G.M., and Nieto, M., Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II−III cortical neurons, Dev. Neurobiol., 2015, vol. 75, p. 163. https://doi.org/10.1002/dneu.22215

    Article  CAS  Google Scholar 

  22. Dehay, C., Kennedy, H., and Kosik, K.S., The outer subventricular zone and primate-specific cortical complexification, Neuron, 2015, vol. 85, p. 683. https://doi.org/10.1016/j.neuron.2014.12.060

    Article  CAS  Google Scholar 

  23. Dennis, M.Y., Nuttle, X., Sudmant, P.H., Antonacci, F., Graves, T.A., Nefedov, M., Rosenfeld, J.A., Sajjadian, S., Malig, M., Kotkiewicz, H., Curry, C.J., Shafer, S., Shaf-fer, L.G., de Jong, P.J., Wilson, R.K., and Eichler, E.E., Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication, Cell, 2012, vol. 149, p. 912. https://doi.org/10.1016/j.cell.2012.03.033

    Article  CAS  Google Scholar 

  24. Dermitzakis, E.T. and Clark, A.G., Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover, Mol. Biol. Evol., 2002, vol. 19, p. 1114. https://doi.org/10.1093/oxfordjournals.molbev.a004169

    Article  CAS  Google Scholar 

  25. Doan, R.N., Bae, B.I., Cubelos, B., Chang, C., Hossain, A.A., Al-Saad, S., Mukaddes, N.M., Oner, O., Al-Saffar, M., Balkhy, S., Gascon, G.G., Nieto, M., Walsh, C.A., and Homozygosity Mapping Consortium for Autism, Mutations in human accelerated regions disrupt cognition and social behavior, Cell, 2016, p. 341. https://doi.org/10.1016/j.cell.2016.08.071

  26. Doggett, N.A., Xie, G., Meincke, L.J., Sutherland, R.D., Mundt, M.O., Berbari, N.S., Davy, B.E., Robinson, M.L., Rudd, M.K., Weber, J.L., Stallings, R.L., and Han, C., A 360-kb interchromosomal duplication of the human HY-DIN locus, Genomics, 2006, vol. 88, p. 762. https://doi.org/10.1016/j.ygeno.2006.07.012

    Article  CAS  Google Scholar 

  27. Dorschner, M.O., Hawrylycz, M., Humbert, R., Wallace, J.C., Shafer, A., Kawamoto, J., Mack, J., Hall, R., Goldy, J., Sabo, P.J., Kohli, A., Li, Q., McArthur, M., and Stamatoyannopoulos, J.A., High-throughput localization of functional elements by quantitative chromatin profiling, Nat. Methods, 2004, vol. 1, p. 219. https://doi.org/10.1038/nmeth721

    Article  CAS  Google Scholar 

  28. Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S., Wiebe, V., Kitano, T., Monaco, A.P., and Pääbo, S., Molecular evolution of FOXP2, a gene involved in speech and language, Nature, 2002, vol. 418, p. 869. https://doi.org/10.1038/nature01025

    Article  CAS  Google Scholar 

  29. Erady, C., Amin, K., Onilogbo, T.O.A.E., Tomasik, J., Jukes-Jones, R., Umrania, Y., Bahn, S., and Prabakaran, S., Novel open reading frames in human accelerated regions and transposable elements reveal new leads to understand schizophrenia and bipolar disorder, Mol. Psychiatry, 2021, vol. 27, p. 1455. https://doi.org/10.1038/s41380-021-01405-6

    Article  CAS  Google Scholar 

  30. Felsenstein, J. and Churchill, G.A., A Hidden Markov Model approach to variation among sites in rate of evolution, Mol. Biol. Evol., 1996, vol. 13, p. 93. https://doi.org/10.1093/oxfordjournals.molbev.a025575

    Article  CAS  Google Scholar 

  31. Feuk, L., Kalervo, A., Lipsanen-Nyman, M., Skaug, J., Nakabayashi, K., Finucane, B., Hartung, D., Innes, M., Kerem, B., Nowaczyk, M.J., Rivlin, J., Roberts, W., Senman, L., Summers, A., Szatmari, P., et al., Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia, Am. J. Hum. Genet., 2006, vol. 79, p. 965. https://doi.org/10.1086/508902

    Article  CAS  Google Scholar 

  32. Fiddes, I.T., Lodewijk, G.A., Mooring, M., Bosworth, C.M., Ewing, A.D., Mantalas, G.L., Novak, A.M., van den Bout, A., Bishara, A., Rosenkrantz, J.L., Lorig-Roach, R., Field, A.R., Haeussler, M., Russo, L., Bhaduri, A., et al., Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis, Cell, 2018, vol. 173, p. 1356. https://doi.org/10.1016/j.cell.2018.03.051

    Article  CAS  Google Scholar 

  33. Fisher, S.E., Vargha-Khadem, F., Watkins, K.E., Monaco, A.P., and Pembrey, M.E., Localisation of a gene implicated in a severe speech and language disorder, Nat. Genet., 1998, vol. 18, p. 168. https://doi.org/10.1038/ng0298-168

    Article  CAS  Google Scholar 

  34. Florio, M., Albert, M., Taverna, E., Namba, T., Brandl, H., Lewitus, E., Haffner, C., Sykes, A., Wong, F.K., Peters, J., Guhr, E., Klemroth, S., Prüfer, K., Kelso, J., Naumann, R., et al., Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion, Science, 2015, vol. 347, p. 1465. https://doi.org/10.1126/science.aaa1975

    Article  CAS  Google Scholar 

  35. Franchini, L.F. and Pollard, K.S., Human evolution: the non-coding revolution, BMC Biol., 2017, vol. 15, p. 89. https://doi.org/10.1186/s12915-017-0428-9

    Article  CAS  Google Scholar 

  36. Girskis, K.M., Stergachis, A.B., DeGennaro, E.M., Doan, R.N., Qian, X., Johnson, M.B., Wang, P.P., Sejourne, G.M., Nagy, M.A., Pollina, E.A., Sousa, A.M.M., Shin, T., Kenny, C.J., Scotellaro, J.L., Debo, B.M., et al., Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions, Neuron, 2021, vol. 109, p. 3239. https://doi.org/10.1016/j.neuron.2021.08.005

    Article  CAS  Google Scholar 

  37. Gittelman, R.M., Hun, E., Ay, F., Madeoy, J., Pennacchio, L., Noble, W.S., Hawkins, R.D., and Akey, J.M., Comprehensive identification and analysis of human accelerated regulatory DNA, Genome Res., 2015, vol. 25, p. 1245. https://doi.org/10.1101/gr.192591.115

    Article  CAS  Google Scholar 

  38. Guerreiro, I., Nunes, A., Woltering, J.M., Casaca, A., Nóvoa, A., Vinagre, T., Hunter, M.E., Duboule, D., and Mallo, M., Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, p. 10682. https://doi.org/10.1073/pnas.1300592110

    Article  Google Scholar 

  39. Guidotti, A., Auta, J., Davis, J.M., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D.R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D., and Costa, E., Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study, Arch. Gen. Psychiatry, 2000, vol. 57, p. 1061. https://doi.org/10.1001/archpsyc.57.11.1061

    Article  CAS  Google Scholar 

  40. Haygood, R., Babbitt, C.C., Fedrigo, O., and Wray, G.A., Contrasts between adaptive coding and noncoding changes during human evolution, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 7853. https://doi.org/10.1073/pnas.0911249107

    Article  Google Scholar 

  41. Herrmann, E., Call, J., Hernàndez-Lloreda, M.V., Hare, B., and Tomasello, M., Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis, Science, 2007, vol. 317, p. 1360. https://doi.org/10.1126/science.1146282

    Article  CAS  Google Scholar 

  42. Hoffman, M.M., Ernst, J., Wilder, S.P., Kundaje, A., Harris, R.S., Libbrecht, M., Giardine, B., Ellenbogen, P.M., Bilmes, J.A., Birney, E., Hardison, R.C., Dunham, I., Kellis, M., and Noble, W.S., Integrative annotation of chromatin elements from ENCODE data, Nucleic Acids Res., 2013, vol. 41, p. 827. https://doi.org/10.1093/nar/gks1284

    Article  CAS  Google Scholar 

  43. Huang, J., Perlis, R.H., Lee, P.H., Rush, A.J., Fava, M., Sachs, G.S., Lieberman, J., Hamilton, S.P., Sullivan, P., Sklar, P., Purcell, S., and Smoller, J.W., Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression, Am. J. Psychiatry, 2010, vol. 167, p. 1254. https://doi.org/10.1176/appi.ajp.2010.09091335

    Article  Google Scholar 

  44. Hubisz, M.J. and Pollard, K.S., Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution, Curr. Opin. Genet. Dev., 2014, vol. 29, p. 15. https://doi.org/10.1016/j.gde.2014.07.005

    Article  CAS  Google Scholar 

  45. Hubisz, M.J., Pollard, K.S., and Siepel, A., PHAST and RPHAST: phylogenetic analysis with space/time models, Brief. Bioinform., 2011, vol. 12, p. 41. https://doi.org/10.1093/bib/bbq072

    Article  CAS  Google Scholar 

  46. Impagnatiello, F., Guidotti, A.R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M.G., Uzunov, D.P., Smal-heiser, N.R., Davis, J.M., Pandey, G.N., Pappas, G.D., Tueting, P., Sharma, R.P., and Costa, E., A decrease of reelin expression as a putative vulnerability factor in schizophrenia, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, p. 15718. https://doi.org/10.1073/pnas.95.26.15718

    Article  CAS  Google Scholar 

  47. Jeffries, A.R., Curran, S., Elmslie, F., Sharma, A., Wenger, S., Hummel, M., and Powell, J., Molecular and phenotypic characterization of ring chromosome 22, Am. J. Med. Genet. A, 2005, vol. 137, p. 139. https://doi.org/10.1002/ajmg.a.30780

    Article  Google Scholar 

  48. Johnson, R., Zuccato, C., Belyaev, N.D., Guest, D.J., Cattaneo, E., and Buckley, N.J., A microRNA-based gene dysregulation pathway in Huntington’s disease, Neurobiol. Dis., 2008, vol. 29, p. 438. https://doi.org/10.1016/j.nbd.2007.11.001

    Article  CAS  Google Scholar 

  49. Johnson, M.B., Kawasawa, Y.I., Mason, C.E., Krsnik, Z., Coppola, G., Bogdanović, D., Geschwind, D.H., Mane, S.M., State, M.W., and Sestan, N., Functional and evolutionary insights into human brain development through global transcriptome analysis, Neuron, 2009, vol. 62, p. 494. https://doi.org/10.1016/j.neuron.2009.03.027

    Article  CAS  Google Scholar 

  50. Johnson, R., Richter, N., Jauch, R., Gaughwin, P.M., Zuccato, C., Cattaneo, E., and Stanton, L.W., Human accelerated region 1 noncoding RNA is repressed by REST in Huntington’s disease, Physiol. Genomics, 2010, vol. 41, p. 269. https://doi.org/10.1152/physiolgenomics.00019.2010

    Article  CAS  Google Scholar 

  51. Kalscheuer, V.M., FitzPatrick, D., Tommerup, N., Bugge, M., Niebuhr, E., Neumann, L.M., Tzschach, A., Shoichet, S.A., Menzel, C., Erdogan, F., Arkesteijn, G., Ropers, H.H., and Ullmann, R., Mutations in autism susceptibility candidate 2 (Auts2) in patients with mental retardation, Hum. Genet., 2007, vol. 121, p. 501. https://doi.org/10.1007/s00439-006-0284-0

    Article  Google Scholar 

  52. Kamm, G.B., López-Leal, R., Lorenzo, J.R., and Franchini, L.F., A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice, Philos. Trans. R. Soc. London, Ser. B, 2013a, vol. 368, p. 20130019. https://doi.org/10.1098/rstb.2013.0019

    Article  CAS  Google Scholar 

  53. Kamm, G.B., Pisciottano, F., Kliger, R., and Franchini, L.F., The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome, Mol. Biol. Evol., 2013b, vol. 30, p. 1088. https://doi.org/10.1093/molbev/mst023

    Article  CAS  Google Scholar 

  54. Kamnasaran, D., Muir, W.J., Ferguson-Smith, M.A., and Cox, D.W., Disruption of the neuronal PAS3 gene in a family affected with schizophrenia, J. Med. Genet., 2003, vol. 40, p. 325. https://doi.org/10.1136/jmg.40.5.325

    Article  CAS  Google Scholar 

  55. King, M.C. and Wilson, A.C., Evolution at two levels in humans and chimpanzees, Science, 1975, vol. 188, p. 107. https://doi.org/10.1126/science.1090005

    Article  CAS  Google Scholar 

  56. Knable, M.B., Torrey, E.F., Webster, M.J., and Bartko, J.J., Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium, Brain Res. Bull., 2001, vol. 55, p. 651. https://doi.org/10.1016/s0361-9230(01)00521-4

    Article  CAS  Google Scholar 

  57. Kvon, E.Z., Kamneva, O.K., Melo, U.S., Barozzi, I., Osterwalder, M., Mannion, B.J., Tissières, V., Pickle, C.S., Plajzer-Frick, I., Lee, E.A., Kato, M., Garvin, T.H., Akiyama, J.A., Afzal, V., Lopez-Rios, J., et al., Progressive loss of function in a limb enhancer during snake evolution, Cell, 2016, vol. 167, p. 633. https://doi.org/10.1016/j.cell.2016.09.028

    Article  CAS  Google Scholar 

  58. Lai, C.S., Fisher, S.E., Hurst, J.A., Levy, E.R., Hodg-son, S., Fox, M., Jeremiah, S., Povey, S., Jamison, D.C., Green, E.D., Vargha-Khadem, F., and Monaco, A.P., The SPCH1 region on human 7q31: genomic characterization of the critical interval and localization of translocations associated with speech and language disorder, Am. J. Hum. Genet., 2000, vol. 67, p. 357. https://doi.org/10.1086/303011

    Article  CAS  Google Scholar 

  59. Lai, C.S., Fisher, S.E., Hurst, J.A., Vargha-Khadem, F., and Monaco, A.P., A forkhead-domain gene is mutated in a severe speech and language disorder, Nature, 2001, vol. 413, p. 519. https://doi.org/10.1038/35097076

    Article  CAS  Google Scholar 

  60. Lai, C.S., Gerrelli, D., Monaco, A.P., Fisher, S.E., and Copp, A.J., FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder, Brain, 2003, vol. 126, p. 2455. https://doi.org/10.1093/brain/awg247

    Article  Google Scholar 

  61. Lennon, P.A., Cooper, M.L., Peiffer, D.A., Gunderson, K.L., Patel, A., Peters, S., Cheung, S.W., and Bacino, C.A., Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review, Am. J. Med. Genet. A, 2007, vol. 143, p. 791. https://doi.org/10.1002/ajmg.a.31632

    Article  Google Scholar 

  62. Levchenko, A., Kanapin, A., Samsonova, A., and Gainetdinov, R.R., Human accelerated regions and other human-specific sequence variations in the context of evolution and their relevance for brain development, Genome Biol. Evol., 2018, vol. 10, p. 166. https://doi.org/10.1093/gbe/evx240

    Article  CAS  Google Scholar 

  63. Li, G., Wang, J., Rossiter, S.J., Jones, G., and Zhang, S., Accelerated FoxP2 evolution in echolocating bats, PLoS One, 2007, vol. 2, p. e900. https://doi.org/10.1371/journal.pone.0000900

    Article  CAS  Google Scholar 

  64. Li, Q., Zheng, S., Han, A., Lin, C.H., Stoilov, P., Fu, X.D., and Black, D.L., The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation, Elife, 2014, vol. 3, p. e01201. https://doi.org/10.7554/eLife.01201

    Article  Google Scholar 

  65. Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M.F., Parker, B.J., Washietl, S., Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E., Ward, L.D., Lowe, C.B., Holloway, A.K., Clamp, M., Gnerre, S., et al., A high-resolution map of human evolutionary constraint using 29 mammals, Nature, 2011, vol. 478, p. 476. https://doi.org/10.1038/nature10530

    Article  CAS  Google Scholar 

  66. MacDermot, K.D., Bonora, E., Sykes, N., Coupe, A.M., Lai, C.S., Vernes, S.C., Vargha-Khadem, F., McKen-zie, F., Smith, R.L., Monaco, A.P., and Fisher, S.E., Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits, Am. J. Hum. Genet., 2005, vol. 76, p. 1074. https://doi.org/10.1086/430841

    Article  CAS  Google Scholar 

  67. Maricic, T., Günther, V., Georgiev, O., Gehre, S., Curlin, M., Schreiweis, C., Naumann, R., Burbano, H.A., Meyer, M., Lalueza-Fox, C., de la Rasilla, M., Rosas, A., Gajovic, S., Kelso, J., Enard, W., et al., A recent evolutionary change affects a regulatory element in the human FOXP2 gene, Mol. Biol. Evol., 2013, vol. 30, p. 844. https://doi.org/10.1093/molbev/mss271

    Article  CAS  Google Scholar 

  68. Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T., Stehling-Sun, S., et al., Systematic localization of common disease-associated variation in regulatory DNA, Science, 2012, vol. 337, p. 1190. https://doi.org/10.1126/science.1222794

    Article  CAS  Google Scholar 

  69. Mayor, C., Brudno, M., Schwartz, J.R., Poliakov, A., Rubin, E.M., Frazer, K.A., Pachter, L.S., and Dubchak, I., VISTA: visualizing global DNA sequence alignments of arbitrary length, Bioinformatics, 2000, vol. 16, p. 1046. https://doi.org/10.1093/bioinformatics/16.11.1046

    Article  CAS  Google Scholar 

  70. Mitchell, C. and Silver, D.L., Enhancing our brains: genomic mechanisms underlying cortical evolution, Semin. Cell. Dev. Biol., 2018, vol. 76, p. 23. https://doi.org/10.1016/j.semcdb.2017.08.045

    Article  CAS  Google Scholar 

  71. Oksenberg, N., Stevison, L., Wall, J.D., and Ahituv, N., Function and regulation of AUTS2, a gene implicated in autism and human evolution, PLoS Genet., 2013, vol. 9, p. e1003221. https://doi.org/10.1371/journal.pgen.1003221

    Article  CAS  Google Scholar 

  72. Oswald, F., Klöble, P., Ruland, A., Rosenkranz, D., Hinz, B., Butter, F., Ramljak, S., Zechner, U., and Herlyn, H., The FOXP2-driven network in developmental disorders and neurodegeneration, Front. Cell. Neurosci., 2017, vol. 11, p. 212. https://doi.org/10.3389/fncel.2017.00212

    Article  CAS  Google Scholar 

  73. Peñagarikano, O. and Geschwind, D.H., What does CN-TNAP2 reveal about autism spectrum disorder?, Trends Mol. Med., 2012, vol. 18, p. 156. https://doi.org/10.1016/j.molmed.2012.01.003

    Article  CAS  Google Scholar 

  74. Pfeiffer, M., Betizeau, M., Waltispurger, J., Pfister, S.S., Douglas, R.J., Kennedy, H., and Dehay, C., Unsupervised lineage-based characterization of primate precursors reveals high proliferative and morphological diversity in the OSVZ, J. Comp. Neurol., 2016, vol. 524, p. 535. https://doi.org/10.1002/cne.23820

    Article  Google Scholar 

  75. Pickard, B.S., Christoforou, A., Thomson, P.A., Fawkes, A., Evans, K.L., Morris, S.W., Porteous, D.J., Blackwood, D.H., and Muir, W.J., Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder, Mol. Psychiatry, 2009, vol. 14, p. 874. https://doi.org/10.1038/mp.2008.24

    Article  CAS  Google Scholar 

  76. Pickard, B.S., Malloy, M.P., Porteous, D.J., Blackwood, D.H., and Muir, W.J., Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability, Am. J. Med. Genet., Part B, 2005, vol. 136, p. 26. https://doi.org/10.1002/ajmg.b.30204

    Article  Google Scholar 

  77. Pilia, G., Hughes-Benzie, R.M., MacKenzie, A., Baybayan, P., Chen, E.Y., Huber, R., Neri, G., Cao, A., Forabosco, A., and Schlessinger, D., Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome, Nat. Genet., 1996, vol. 12, p. 241. https://doi.org/10.1038/ng0396-241

    Article  CAS  Google Scholar 

  78. Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R., and Siepel, A., Detection of nonneutral substitution rates on mammalian phylogenies, Genome Res., 2010, vol. 20, p. 110. https://doi.org/10.1101/gr.097857.109

    Article  CAS  Google Scholar 

  79. Pollard, K.S., Salama, S.R., Lambert, N., Lambot, M.A., Coppens, S., Pedersen, J.S., Katzman, S., King, B., Onodera, C., Siepel, A., Kern, A.D., Dehay, C., Igel, H., Ares, M., Vanderhaeghen, P., et al., An RNA gene expressed during cortical development evolved rapidly in humans, Nature, 2006, vol. 443, p. 167. https://doi.org/10.1038/nature05113

    Article  CAS  Google Scholar 

  80. Pollen, A.A., Nowakowski, T.J., Chen, J., Retallack, H., Sandoval-Espinosa, C., Nicholas, C.R., Shuga, J., Liu, S.J., Oldham, M.C., Diaz, A., Lim, D.A., Leyrat, A.A., West, J.A., and Kriegstein, A.R., Molecular identity of human outer radial glia during cortical development, Cell, 2015, vol. 163, p. 55. https://doi.org/10.1016/j.cell.2015.09.004

    Article  CAS  Google Scholar 

  81. Prabhakar, S., Noonan, J.P., Pääbo, S., and Rubin, E.M., Accelerated evolution of conserved noncoding sequences in humans, Science, 2006, vol. 314, p. 786. https://doi.org/10.1126/science.1130738

    Article  CAS  Google Scholar 

  82. Prabhakar, S., Visel, A., Akiyama, J.A., Shoukry, M., Lewis, K.D., Holt, A., Plajzer-Frick, I., Morrison, H., Fitzpatrick, D.R., Afzal, V., Pennacchio, L.A., Rubin, E.M., and Noonan, J.P., Human-specific gain of function in a developmental enhancer, Science, 2008, vol. 321, p. 1346. https://doi.org/10.1126/science.1159974

    Article  CAS  Google Scholar 

  83. Rakic, P., Specification of cerebral cortical areas, Science, 1988, vol. 241, p. 170.

    Article  CAS  Google Scholar 

  84. Rakic, P., A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, vol. 18, p. 383. https://doi.org/10.1016/0166-2236(95)93934-p

    Article  CAS  Google Scholar 

  85. Reuter, M.S., Riess, A., Moog, U., Briggs, T.A., Chandler, K.E., Rauch, A., Stampfer, M., Steindl, K., Gläser, D., Joset, P., DDD Study, Krumbiegel, M., Rabe, H., Schulte-Mattler, U., Bauer, P., et al., FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum, J. Med. Genet., 2017, vol. 54, p. 64. https://doi.org/10.1136/jmedgenet-2016-104094

    Article  CAS  Google Scholar 

  86. Rice, G.M., Raca, G., Jakielski, K.J., Laffin, J.J., Iyama-Kurtycz, C.M., Hartley, S.L., Sprague, R.E., Heintzelman, A.T., and Shriberg, L.D., Phenotype of FOXP2 haploinsufficiency in a mother and son, Am. J. Med. Genet., Part A, 2012, vol. 158, p. 74. https://doi.org/10.1002/ajmg.a.34354

    Article  CAS  Google Scholar 

  87. Schreiber, E., Tobler, A., Malipiero, U., Schaffner, W., and Fontana, A., cDNA cloning of human N-Oct3, a nervous-system specific POU domain transcription factor binding to the octamer DNA motif, Nucleic Acids Res., 1993, vol. 21, p. 253. https://doi.org/10.1093/nar/21.2.253

    Article  CAS  Google Scholar 

  88. Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y.H., Hicks, J., et al., Strong association of de novo copy number mutations with autism, Science, 2007, vol. 316, p. 445. https://doi.org/10.1126/science.1138659

    Article  CAS  Google Scholar 

  89. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., Weinstock, G.M., Wilson, R.K., Gibbs, R.A., Kent, W.J., Miller, W., et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res., 2005, vol. 15, p. 1034. https://doi.org/10.1101/gr.3715005

    Article  CAS  Google Scholar 

  90. Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., Vernes, S.C., Fisher, S.E., Ren, B., and Geschwind, D.H., Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain, Am. J. Hum. Genet., 2007, vol. 81, p. 1144. https://doi.org/10.1086/522237

    Article  CAS  Google Scholar 

  91. Sudmant, P.H., Kitzman, J.O., Antonacci, F., Alkan, C., Malig, M., Tsalenko, A., Sampas, N., Bruhn, L., Shendure, J., Eichler, E.E., and 1000 Genomes Project, Diversity of human copy number variation and multicopy genes, Science, 2010, vol. 330, p. 641. https://doi.org/10.1126/science.1197005

    Article  CAS  Google Scholar 

  92. Sullivan, P.F., Kendler, K.S., and Neale, M.C., Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies, Arch. Gen. Psychiatry, 2003, vol. 60, p. 1187. https://doi.org/10.1001/archpsyc.60.12.1187

    Article  Google Scholar 

  93. Suzuki, I.K., Gacquer, D., Van Heurck, R., Kumar, D., Wojno, M., Bilheu, A., Herpoel, A., Lambert, N., Che-ron, J., Polleux, F., Detours, V., and Vanderhaeghen, P., Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation, Cell, 2018, vol. 173, p. 1370. https://doi.org/10.1016/j.cell.2018.03.067

    Article  CAS  Google Scholar 

  94. Tomasello, M. and Vaish, A., Origins of human cooperation and morality, Annu. Rev. Psychol., 2013, vol. 64, p. 231. https://doi.org/10.1146/annurev-psych-113011-143812

    Article  Google Scholar 

  95. van Dongen, J. and Boomsma, D.I., The evolutionary paradox and the missing heritability of schizophrenia, Am. J. Med. Genet. B: Neuropsychiatr. Genet., 2013, vol. 162, p. 122. https://doi.org/10.1002/ajmg.b.32135

    Article  CAS  Google Scholar 

  96. Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., and Passingham, R., Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, p. 930. https://doi.org/10.1073/pnas.92.3.930

    Article  CAS  Google Scholar 

  97. Varki, A. and Altheide, T.K., Comparing the human and chimpanzee genomes: searching for needles in a haystack, Genome Res., 2005, vol. 15, p. 1746. https://doi.org/10.1101/gr.3737405

    Article  CAS  Google Scholar 

  98. Vernes, S.C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J.M., Davies, K.E., Geschwind, D.H., and Fisher, S.E., High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders, Am. J. Hum. Genet., 2007, vol. 81, p. 1232. https://doi.org/10.1086/522238

    Article  CAS  Google Scholar 

  99. Veugelers, M., Cat, B.D., Muyldermans, S.Y., Reekmans, G., Delande, N., Frints, S., Legius, E., Fryns, J.P., Schrander-Stumpel, C., Weidle, B., Magdalena, N., and David, G., Mutational analysis of the GPC3/GPC4 glypican gene cluster on Xq26 in patients with Simpson–Golabi–Behmel syndrome: identification of loss-of-function mutations in the GPC3 gene, Hum. Mol. Genet., 2000, vol. 9, p. 1321. https://doi.org/10.1093/hmg/9.9.1321

    Article  CAS  Google Scholar 

  100. Wassink, T.H., Piven, J., Vieland, V.J., Huang, J., Swiderski, R.E., Pietila, J., Braun, T., Beck, G., Folstein, S.E., Haines, J.L., and Sheffield, V.C., Evidence supporting Wnt2 as an autism susceptibility gene, Am. J. Med. Genet., 2001, vol. 105, p. 406. https://doi.org/10.1002/ajmg.1401

    Article  CAS  Google Scholar 

  101. Webb, D.M. and Zhang, J., FoxP2 in song-learning birds and vocal-learning mammals, J. Hered., 2005, vol. 96, p. 212. https://doi.org/10.1093/jhered/esi025

    Article  CAS  Google Scholar 

  102. Wei, Y., de Lange, S.C., Scholtens, L.H., Watanabe, K., Ardesch, D.J., Jansen, P.R., Savage, J.E., Li, L., Preuss, T.M., Rilling, J.K., Posthuma, D., and van den Heuvel, M.P., Genetic mapping and evolutionary analysis of human-expanded cognitive networks, Nat. Commun., 2019, vol. 10, p. 4839. https://doi.org/10.1038/s41467-019-12764-8

    Article  CAS  Google Scholar 

  103. Won, H., de la Torre-Ubieta, L., Stein, J.L., Parikshak, N.N., Huang, J., Opland, C.K., Gandal, M.J., Sutton, G.J., Hormozdiari, F., Lu, D., Lee, C., Eskin, E., Voineagu, I., Ernst, J., and Geschwind, D.H., Chromosome conformation elucidates regulatory relationships in developing human brain, Nature, 2016, vol. 538, p. 523. https://doi.org/10.1038/nature19847

    Article  CAS  Google Scholar 

  104. Won, H., Huang, J., Opland, C.K., Hartl, C.L., and Geschwind, D.H., Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility, Nat. Commun., 2019, vol. 10, p. 2396. https://doi.org/10.1038/s41467-019-10248-3

    Article  CAS  Google Scholar 

  105. Xu, S., Han, J.C., Morales, A., Menzie, C.M., Williams, K., and Fan, Y.S., Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism, Cytogenet. Genome Res., 2008, vol. 122, p. 181. https://doi.org/10.1159/000172086

    Article  CAS  Google Scholar 

  106. Xuan, J.Y., Hughes-Benzie, R.M., and MacKenzie, A.E., A small interstitial deletion in the GPC3 gene causes Simpson–Golabi–Behmel syndrome in a Dutch–Canadian family, J. Med. Genet., 1999, vol. 36, p. 57.

    Article  CAS  Google Scholar 

  107. Zeesman, S., Nowaczyk, M.J., Teshima, I., Roberts, W., Cardy, J.O., Brian, J., Senman, L., Feuk, L., Osborne, L.R., and Scherer, S.W., Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2, Am. J. Med. Genet., Part A, 2006, vol. 140, p. 509. https://doi.org/10.1002/ajmg.a.31110

    Article  Google Scholar 

  108. Zhang, J., Webb, D.M., and Podlaha, O., Accelerated protein evolution and origins of human-specific features: Foxp2 as an example, Genetics, 2002, vol. 162, p. 1825. https://doi.org/10.1093/genetics/162.4.1825

    Article  CAS  Google Scholar 

  109. Zilina, O., Reimand, T., Zjablovskaja, P., Männik, K., Männamaa, M., Traat, A., Puusepp-Benazzouz, H., Kurg, A., and Ounap, K., Maternally and paternally inherited deletion of 7q31 involving the FOXP2 gene in two families, Am. J. Med. Genet., Part A, 2012, vol. 158, p. 254. https://doi.org/10.1002/ajmg.a.34378

    Article  CAS  Google Scholar 

  110. Zuccato, C. and Cattaneo, E., Role of brain-derived neurotrophic factor in Huntington’s disease, Prog. Neurobiol., 2007, vol. 81, p. 294. https://doi.org/10.1016/j.pneurobio.2007.01.003

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.A. Nuriddinov and O.L. Serov (Institute of Cytology and Genetics, Russian Academy of Sciences) for valuable comments on the article.

Funding

This study was financially supported by the Russian Foundation for Basic Research (19-29-04067 mk) and a budget project (no. FWNR-2022-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Shnaider.

Ethics declarations

The authors declare that they have no conflicts of interests. No animals or human beings were involved in this research as subjects.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkova, A.S., Khabarova, A.A., Chvileva, A.S. et al. HARs: History, Functions, and Role in the Evolution and Pathogenesis of Human Diseases. Cell Tiss. Biol. 16, 499–512 (2022). https://doi.org/10.1134/S1990519X22060086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X22060086

Keywords:

Navigation