Skip to main content
Log in

Nitroxidergic and Calretinin-Containing Nonpyramidal Neurons of Rat Hippocampus

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

Unlike pyramidal neurons, interneurons of the hippocampus are a heterogeneous group of neurons that differ in their morphological, cytochemical, and functional characteristics. The aim of this study was to conduct a comparative morphological analysis of nitroxidergic (NOS+) and calretinin-containing (CR+) nonpyramidal neurons of the CA1 and CA3 zones in the rat hippocampus using immunohistochemical methods. Qualitative and quantitative differences in NOS+ and CR+ populations of nonpyramidal neurons in different layers of the studied zones of the hippocampus were demonstrated. Differences in the quantitative composition of the studied populations of interneurons were also demonstrated in two subregions of the hippocampus that correspond to dorsal and intermediate hippocampus. It was established that NOS+ interneurons are more typical for the dorsal hippocampus, while a greater number of CR+ interneurons are presented in the intermediate hippocampus. Data obtained during the study can contribute to understanding the role of nonpyramidal neurons in the formation of functional specialization of different regions of the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alkadhi, K.A., Cellular and molecular differences between area CA1 and the dentate gyrus of the hippocampus, Mol. Neurobiol., 2019, vol. 56, p. 6566. https://doi.org/10.1007/S12035-019-1541-2

    Article  CAS  PubMed  Google Scholar 

  2. Amaral, D.G., Insausti, R., and Cowan, W.M., The commissural connections of the monkey hippocampal formation, J. Comp. Neurol., vol. 224, p. 307. https://doi.org/10.1002/CNE.902240302

  3. Antonoudiou, P., Tan, Y.L., Kontou, G., Louise Upton, A., and Mann, E.O., Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations, J. Neurosci., 2020, vol. 40, p. 7668. https://doi.org/10.1523/JNEUROSCI.0261-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bikbaev, A. and Manahan-Vaughan, D., Relationship of hippocampal theta and gamma oscillations to potentiation of synaptic transmission, Front. Neurosci., 2008, vol. 2, p. 56. https://doi.org/10.3389/NEURO.01.010.2008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Booker, S.A. and Vida, I., Morphological diversity and connectivity of hippocampal interneurons, Cell Tissue Res., 2018, vol. 373, p. 619. https://doi.org/10.1007/S00441-018-2882-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burgess, N., Maguire, E.A., and O’Keefe, J., The human hippocampus and spatial and episodic memory, Neuron, 2002, vol. 35, p. 625. https://doi.org/10.1016/S0896-6273(02)00830-9

    Article  CAS  PubMed  Google Scholar 

  7. Farahimanesh, S., Karimi, S., and Haghparast, A., Role of orexin-1 receptors in the dorsal hippocampus (CA1 region) in expression and extinction of the morphine-induced conditioned place preference in the rats, Peptides, 2018, vol. 101, p. 25. https://doi.org/10.1016/J.PEPTIDES.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  8. Gergues, M.M., Han, K.J., Choi, H.S., Brown, B., Clausing, K.J., Turner, V.S., Vainchtein, I.D., Molofsky, A.V., and Kheirbek, M.A., Circuit and molecular architecture of a ventral hippocampal network, Nat. Neurosci., vol. 23, p. 1444. https://doi.org/10.1038/S41593-020-0705-8

  9. Guet-McCreight, A., Skinner, F.K., and Topolnik, L., Common principles in functional organization of VIP/calretinin cell-driven disinhibitory circuits across cortical areas, Front. Neural Circuits, 2020, vol. 14, p. 32. https://doi.org/10.3389/FNCIR.2020.00032/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gulyás, A.I., Hájos, N., and Freund, T.F., Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus, J. Neurosci., 1996, vol. 16, p. 3397. https://doi.org/10.1523/JNEUROSCI.16-10-03397.1996

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gulyás, A.I., Hájos, N., Katona, I., and Freund, T.F., Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum, Eur. J. Neurosci., 2003, vol. 17, p. 1861. https://doi.org/10.1046/J.1460-9568.2003.02630.X

    Article  PubMed  Google Scholar 

  12. Gusel’nikova, V.V. and Korzhevskiy, D.E., NeuN as a neuronal nuclear antigen and neuron differentiation marker, Acta Nat., 2015, vol. 7, p. 42. https://doi.org/10.32607/20758251-2015-7-2-42-47

    Article  Google Scholar 

  13. Kemp, A. and Manahan-Vaughan, D., The hippocampal CA1 region and dentate gyrus differentiate between environmental and spatial feature encoding through long-term depression, Cereb. Cortex, 2008, vol. 18, p. 968. https://doi.org/10.1093/CERCOR/BHM136

    Article  PubMed  Google Scholar 

  14. Klausberger, T., Magill, P.J., Márton, L.F., Roberts, J.D.B., Cobden, P.M., Buzsáki, G., and Somogyi, P., Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo, Nature, 2003, vol. 421, p. 844. https://doi.org/10.1038/NATURE01374

    Article  CAS  PubMed  Google Scholar 

  15. Krook-Magnuson, E., Varga, C., Lee, S.H., and Soltesz, I., New dimensions of interneuronal specialization unmasked by principal cell heterogeneity, Trends Neurosci., 2012, vol. 35, p. 175. https://doi.org/10.1016/J.TINS.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  16. Lau, P.Y.P., Katona, L., Saghy, P., Newton, K., Somogyi, P., and Lamsa, K.P., Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo, Brain Struct. Funct., 2017, vol. 222, p. 1809. https://doi.org/10.1007/S00429-016-1309-7

    Article  CAS  PubMed  Google Scholar 

  17. Leite, J.P., Chimelli, L., Terra-Bustamante, V.C., Costa, E.T., Assirati, J.A., De Nucci, G., and Martins, A.R., Loss and sprouting of nitric oxide synthase neurons in the human epileptic hippocampus, Epilepsia, 2002, vol. 43, suppl. 5, p. 235. https://doi.org/10.1046/J.1528-1157.43.S.5.29.X

    Article  CAS  PubMed  Google Scholar 

  18. Levone, B.R., Codagnone, M.G., Moloney, G.M., Nolan, Y.M., Cryan, J.F., and O’Leary, O.F., Adult-born neurons from the dorsal, intermediate, and ventral regions of the longitudinal axis of the hippocampus exhibit differential sensitivity to glucocorticoids, Mol. Psychiatry, 2021, vol. 26, p. 3240. https://doi.org/10.1038/S41380-020-0848-8

    Article  CAS  PubMed  Google Scholar 

  19. Lothmann, K., Deitersen, J., Zilles, K., Amunts, K., and Herold, C., New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities, Hippocampus, 2021, vol. 31, p. 56. https://doi.org/10.1002/HIPO.23262

    Article  CAS  PubMed  Google Scholar 

  20. Lorente de Nò, R., Studies on the structure of the cerebral cortex, J. Psychol. Neurol., 1934, vol. 46, p. 113.

    Google Scholar 

  21. Meyer, M.A.A. and Radulovic, J., Functional differentiation in the transverse plane of the hippocampus: an update on activity segregation within the DG and CA3 subfields, Brain Res. Bull., 2021, vol. 171, p. 35. https://doi.org/10.1016/J.BRAINRESBULL.2021.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mikulovic, S., Restrepo, C.E., Hilscher, M.M., Kullander, K., and Leão, R.N., Novel markers for OLM interneurons in the hippocampus, Front. Cell Neurosci., 2015, vol. 9, p. 201. https://doi.org/10.3389/FNCEL.2015.00201

    Article  PubMed  PubMed Central  Google Scholar 

  23. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, New York: Elsevier/Academic Press, 2007, 6th. https://doi.org/10.1016/S0166-2236(84)80278-7

  24. Pelkey, K.A., Chittajallu, R., Craig, M.T., Tricoire, L., Wester, J.C., and McBain, C.J., Hippocampal GABAergic inhibitory interneurons, Physiol. Rev., 2017, vol. 97, p. 1619. https://doi.org/10.1152/PHYSREV.00007.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Price, C.J., Cauli, B., Kovacs, E.R., Kulik, A., Lambolez, B., Shigemoto, R., and Capogna, M., Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area, J. Neurosci., 2005, vol. 25, p. 6775. https://doi.org/10.1523/JNEUROSCI.1135-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Squire, L.R., Memory systems of the brain: a brief history and current perspective, Neurobiol. Learn Mem., 2004, vol. 82, p. 171. https://doi.org/10.1016/J.NLM.2004.06.005

    Article  PubMed  Google Scholar 

  27. Suzuki, E. and Okada, T., Regional differences in GABAergic modulation for TEA-induced synaptic plasticity in rat hippocampal CA1, CA3 and dentate gyrus, Neurosci. Res., 2007, vol. 59, p. 183. https://doi.org/10.1016/J.NEURES.2007.06.1472

    Article  CAS  PubMed  Google Scholar 

  28. Tóth, K., Ero’ss, L., Vajda, J., Halász, P., Freund, T.F., and Maglóczky, Z., Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus, Brain, 2010, vol. 133, p. 2763. https://doi.org/10.1093/BRAIN/AWQ149

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tóth, K. and Maglóczky, Z., The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy, Front. Neuroanat., 2014, vol. 8, p. 100. https://doi.org/10.3389/FNANA.2014.00100

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tyan, L., Chamberland, S., Magnin, E., Camiré, O., Francavilla, R., Suzanne David, L., Deisseroth, K., and Topolnik, L., Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry, J. Neurosci., 2014, vol. 34, p. 4534. https://doi.org/10.1523/JNEUROSCI.3813-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, X.Y., Zhang, F., Ying, C.J., Chen, J., Chen, L., Dong, J., Shi, Y., Tang M., Hu, X.T., Pan, Z.H., Xu, N.N., Zheng, K.Y., Tang, R.X., and Song, Y.J., Inhibition of iNOS alleviates cognitive deficits and depression in diabetic mice through downregulating the NO/sGC/cGMP/PKG signal pathway, Behav. Brain Res., 2017, vol. 322, p. 70. https://doi.org/10.1016/J.BBR.2016.12.046

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out within the framework of an order to the Institute of Experimental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sufieva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. When working with animals, all applicable international and national principles of humane treatment of animals were followed. When keeping and killing animals, international regulations of the Helsinki Declaration on the Humane Treatment of Animals and “Rules for Conducting Work using Experimental Animals” (appendix to the order of the Ministry of Health of the Soviet Union no. 755 of August 12, 1977) were followed.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyasov, I., Sufieva, D. & Korzhevskii, D. Nitroxidergic and Calretinin-Containing Nonpyramidal Neurons of Rat Hippocampus. Cell Tiss. Biol. 16, 478–486 (2022). https://doi.org/10.1134/S1990519X22050030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X22050030

Keywords:

Navigation