Skip to main content
Log in

Temozolomide-Resistant Human T2 and T98G Glioblastoma Cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The generation of tumor cells resistant to chemo- and radiation therapy is one of the unsolved problems of oncology. The study of the conditions and mechanisms of temozolomide (first-line drug in glioblastoma therapy) resistance formation is carried out on cultured cell lines. Considering the heterogeneity of glioblastomas, it is important to study the responses of different cell lines to temozolomide. The aim of this work was to obtain and characterize temozolomide-resistant T2 and T98G cell lines. The source of temozolomide was the drug Temodal® in lyophilized form for preparation of an infusion solution. T98G cells are known to be highly resistant to temozolomide; the response of T2 cells to the drug has not been studied yet. A single exposure to 1 mM temozolomide resulted in changes in T2 cell populations' content – an increase of the proportion of giant mononuclear cells and cells with fragmented nuclei. As a result, the number of cells in G0/G1 cell cycle phases decreased, while the number of polyploid cells increased by four times. The cells that reactivated proliferation were exposed to 2 mM temozolomide for the second and third times differed morphologically and in proliferation activity from the cells that underwent a single treatment, and approximated to the intact cells in many respects. After a single incubation with 2 mM temozolomide T2 cells reco-vered 90% monolayer in 48 days, after the second treatment—in 13 days, and after the third exposure—in 2 days only. Temozolomide resistance formation by T2 cells was not accompanied by changes in the initially high levels of multiple drug resistance genes ABCC1, ABCG2, and ABCB1 expression, as well as MGMT gene activity. The formation of temozolomide resistance in T2 glioblastoma cell culture is most likely due to the action of other mechanisms. Consequently, T2 cell line can provide a source of temozolomide-resistant cells and be used as a model of recurrent glioblastoma. T98G cells, as expected, showed an extremely high level of resistance to temozolomide. The drug at doses lower than 5 mM had no prominent effect on these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Angel, I., Kerman, O.P., Rousso-Noori, L., and Friedmann-Morvinsk, D., Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma, Oncogene, 2020, vol. 39, p. 6990.

    Article  CAS  Google Scholar 

  2. Bai, A., Mao, C., Jenkins, R.W., Szulc, Z.M., Bielawska, A., and Hannun, Y.A., Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase, PLoS One, 2017, vol. 12, article ID e0177805.

    Article  Google Scholar 

  3. Baird, C.H., Niederlechner, S., Beck, R., Kallweit, A.R., and Wischmeyer, P.E., L-Threonine induces heat shock protein expression and decreases apoptosis in heat-stressed intestinal epithelial cells, Nutrition, 2013, vol. 29, p. 1404.

    Article  CAS  Google Scholar 

  4. Borodkina, A.B., Deryabin, P.I., Grukova, A.A., and Nikolskiy, N.N., “The social life” of aging cells: what is SASP and why study it?, Acta Nat., 2018, vol. 10, no. 1, p. 4.

    Article  CAS  Google Scholar 

  5. Borst, P., Evers, R., Kool, M., and Wijnholds, J., A family of drug transporters: the multidrug resistance-associated proteins, J. Natl. Cancer Inst., 2000, vol. 92, p. 1295.

    Article  CAS  Google Scholar 

  6. Brosicke, N. and Faissner, A., Role of tenascins in the ECM of gliomas, Cell Adh. Migr., 2015, vol. 9, p. 131.

    Article  Google Scholar 

  7. Chen, F., Qi, X., Qian, M., Dai, Y., and Sun, Y., Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies?, Protein Cell, 2014, vol. 5, p. 816.

    Article  CAS  Google Scholar 

  8. Chen, X., Zhang, M., Gan, H., Wang, H., Lee, J.H., Fang, D., Kitange, G.J., He, L., Hu, Z., Parney, I.F., Mey-er, F.B., Giannini, C., Sarkaria, J.N., and Zhang, Z., A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma, Nat. Commun., 2018, vol. 9, p. 2949.

    Article  Google Scholar 

  9. Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J., The senescence-associated secretory phenotype: the dark side of tumor suppression, Ann. Rev. Pathol., 2010, vol. 5, p. 99.

    Article  CAS  Google Scholar 

  10. Coyle, B., Kessler, M., Sabnis, D.H., and Kerr, I.D., AB-CB1 in children’s brain tumors, Biochem. Soc. Trans., 2015, vol. 43, p. 1018.

    Article  CAS  Google Scholar 

  11. George, A.M., ABC Transporters—40 Years On, Springer, 2015.

    Google Scholar 

  12. Gooijer, M.C., de Vries, N.A., Buckle, T., Buil, L.C.M., Beijnen, J.H., Boogerd, W., and van Tellingen, O., Improved brain penetration and antitumor efficacy of temozolomide by inhibition of ABCB1 and ABCG2, Neoplasia, 2018, vol. 20, p. 710.

    Article  Google Scholar 

  13. Hermisson, M., Klumpp, A., Wick, W., Wischhusen, J., Nagel, G., Roos, W., Kaina, B., and Weller, M., O6-meth-ylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells, J. Neurochem., 2006, vol. 96, p. 766.

    Article  CAS  Google Scholar 

  14. Inan, S. and Hayran, M., Cell signaling pathways related to epithelial mesenchymal transition in cancer metastasis, Crit. Rev. Oncog., 2019, vol. 24, p. 47.

    Article  Google Scholar 

  15. Kanzawa, T., Bedwell, J., Kondo, Y., Kondo, S., and Germano, I.M., Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide, J. Neurosurg., 2003, vol. 99, p. 1047.

    Article  CAS  Google Scholar 

  16. Kathawala, R.J., Gupta, P., Ashby, C.R., and Chen, Z.S., The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade, Drug Resist. Updat., 2015, vol. 18, p. 1.

    Article  Google Scholar 

  17. Kinashi, Y., Ikawa, T., and Takahashi, S., The combined effect of neutron irradiation and temozolomide on glioblastoma cell lines with different MGMT and P53 status, Appl. Radiat. Isot., 2020, vol. 163, p. 109204.

    Article  CAS  Google Scholar 

  18. Kiseleva, L.N., Kartashev, A.V., Vartanyan, N.L., Pine-vich, A.A., Filatov, M.V., and Samoilovich, M.P., Characterization of new human glioblastoma cell lines, Cell Tissue Biol., 2018, vol. 12, no. 1, p. 1.

    Article  Google Scholar 

  19. Kiseleva, L.N., Kartashev, A.V., Vartanyan, N.L., Pine-vich, A.A., and Samoilovich, M.P., A172 and T98G cell lines characteristics, Cell Tissue Biol., 2016, vol. 10, no. 5, p. 341.

    Article  Google Scholar 

  20. Kiseleva, L.N., Kartashev, A.V., Vartanyan, N.L., Pine-vich, A.A., and Samoilovich, M.P., The effect of fotemustine on human glioblastoma cell lines, Cell Tissue Biol., 2018, vol. 12, no. 2, p. 93.

    Article  Google Scholar 

  21. Kitange, G.J., Carlson, B.L., Schroeder, M.A., Gro-gan, P.T., Lamont, J.D., Decker, P.A., Wu, W., James, C.D., and Sarkaria, J.N., Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts, Neuro Oncol., 2009, vol. 11, p. 281.

    Article  CAS  Google Scholar 

  22. Lamouille, S., Xu, J., and Derynck, R., Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, p. 178.

    Article  CAS  Google Scholar 

  23. Lee, S.Y., Temozolomide resistance in glioblastoma multiforme, Genes Dis., 2016, vol. 3, p. 198.

    Article  Google Scholar 

  24. Melincovici, C.S., Bosca, A.B., Susman, S., Marginean, M., Mihu, C., Istrate, M., Moldovan, I.M., Roman, A.L., and Mihu, C.M., Vascular endothelial growth factor (VEGF) – key factor in normal and patholo-gical angiogenesis, Rom. J. Morphol. Embryol., 2018, vol. 59, p. 455.

    PubMed  Google Scholar 

  25. Mirzayans, R. and Murray, D., Intratumor heterogeneity and therapy resistance: contributions of dormancy, apoptosis reversal (anastasis) and cell fusion to disease recurrence, Int. J. Mol. Sci., 2020, vol. 15, p. 1308.

    Article  Google Scholar 

  26. Nguyen, H.S., Shabani, S., Awad, A.J., Kaushal, M., and Doan, N., Molecular markers of therapy-resistant glioblastoma and potential strategy to combat resistance, Int. J. Mol. Sci., 2018, vol. 19, p. 1765.

    Article  Google Scholar 

  27. Oldrini, B., Vaquero-Siguero, N., Mu, Q., Kroon, P, Zhang, Y., Galan-Ganga, M., Bao, Z., Wang, Z., Liu, H., Sa, J.K., Zhao, J., Kim, H., Rodriguez-Perales, S., Nam, D.H., Verhaak, R.G.W., Rabadan, R., Jiang, T., Wang, J., and Squatrito, M., MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas, Nat. Commun., 2020, vol. 11, https://doi.org/10.1038/s41467-020-17717-0

  28. Ortiz-Montero, P., Londono-Vallejo, A., and Vernot, J.P., Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line, Cell Commun. Signal., 2017, vol. 15, p. 17.

    Article  Google Scholar 

  29. Palena, C., Hamilton, D.H., and Fernando, R.I., In--flu-ence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment, Future Oncol., 2012, vol. 8, p. 713.

    Article  CAS  Google Scholar 

  30. Parveen, F., Bender, D., Law, S.H., Mishra, V.K., Chen, C.C., and Ke, L.Y., Role of ceramidases in sphingolipid metabolism and human diseases, Cells, 2019, vol. 8, p. 1573.

    Article  CAS  Google Scholar 

  31. Peignan, L, Garrido, W., Segura, R., Melo, R., Rojas, D., Carcamo, J.G., San Martin, R., and Quezada, C., Combined use of anticancer drugs and an inhibitor of multiple drug resistance-associated protein-1 increases sensitivity and decreases survival of glioblastoma multiforme cells in vitro, Neurochem. Res., 2011, vol. 36, p. 1397.

    Article  CAS  Google Scholar 

  32. Perazzoli, G., Prados, J., Ortiz, R., Caba, O., Cabeza, L., Berdasco, M., Gonzalez, B., and Melguizo, C., Temozolomide resistance in glioblastoma cell lines: implication of MGMT, MMR, P-glycoprotein and CD133 expression, PLoS One, 2015, vol. 10, article ID e0140131.

    Article  Google Scholar 

  33. Svirnovskiy, A.I., Resistance of tumor cells to therapeutic effects as a medical and biological problem, Int. Rev. Clin. Pract. Health, 2014, vol. 4, p. 15.

    Google Scholar 

  34. Vartanyan, N.L., Pinevich, A.A., Bode, I.I., and Samoylovich, M.P., Polyploid giant cancer cells and their role in the formation of resistance to therapeutic treatment, J. Mod. Oncol., 2020, vol. 22, no. 3, p. 105.

    Article  Google Scholar 

  35. Vlachostergios, P.J., Hatzidaki, E., and Papandreou, C.P., MGMT repletion after treatment of glioblastoma cells with temozolomide and O6-benzylguanine implicates NFkB and mutant p53, Neurol. Res., 2013, vol. 35, p. 879.

    Article  CAS  Google Scholar 

  36. Volkov, N.M., Cancer resistance to chemotherapy—are all possibilities exhausted? Pract. Oncol., 2021, vol. 22, no. 2, p. 105.

    Google Scholar 

  37. Wang, D., Wang, C., Wang, L., and Chen, Y., A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment, Drug Deliv., 2019, vol. 26, p. 551.

    Article  CAS  Google Scholar 

  38. Waugh, D.J. and Wilson, C., The interleukin-8 pathway in cancer, Clin. Cancer Res., 2008, vol. 14, p. 6735.

    Article  CAS  Google Scholar 

  39. Weller, M., van den Bent, M., Preusser, M., Le Rhun, E., Tonn, J.C., Minniti, G., Bendszus, M., Balana, C., Chinot, O., Dirven, L., French, P., Hegi, M.E., Jakola, A.S., Platten, M., and Roth, P., et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood, Nat. Rev. Clin. Oncol., 2021, vol. 18, p. 170.

    Article  Google Scholar 

Download references

Funding

The work was performed within the Government Order “Study of resistant tumor cells on glioblastoma cultures in the simulation of stereotactic radiosurgery of recurrent glioblastoma”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pinevich.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of inte-rest. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHOR CONTRIBUTION

A.A. Pinevich, I.I. Bode, N.L. Vartanyan, L.N. Kise-leva, A.V. Kartashev, M.P. Samoilovich: idea and planning of the work. A.A. Pinevich, I.I. Bode, N.L. Vartanyan, M.P. Samoilovich: conducting experiments, processing the results, writing the text, preparing illustrations. A.A. Pinevich, I.I. Bode, L.N. Kiseleva: cell cultivation, preparation of slides for microscopic studies. A.A. Pinevich: microscopy, DNA-cytometry. N.L. Vartanyan: RNA isolation and PCR. A.A. Pinevich, I.I. Bode: morphological analysis. I.I. Bode: statistical analysis. All authors participated in the discussion of the results.

Additional information

Abbreviations: DMSO—dimethyl sulfoxide, ASAH1—acid ceramidase, HGF—hepatocyte growth factor, SASP—senescence-associated secretory phenotype, TNC—tenascin C, VEGF— vascular endothelial growth factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinevich, A.A., Bode, I.I., Vartanyan, N.L. et al. Temozolomide-Resistant Human T2 and T98G Glioblastoma Cells. Cell Tiss. Biol. 16, 339–351 (2022). https://doi.org/10.1134/S1990519X22040058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X22040058

Keywords:

Navigation