Skip to main content
Log in

Immunolocalization of BDNF, GDNF, and NT-3 in the Rat Parietal Cortex with Permanent Occlusion of the Middle Cerebral Artery

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

Immunolocalization of brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) in the parietal cortex of rats in a model of focal stroke caused by permanent occlusion of the middle cerebral artery was studied. The spatial density of marked cells constantly varies by cortex layer and at different stages of the ischemic process, demonstrating opposite topographical trends in the stroke nucleus and penumbra. A significant reduction of immunoreactive cells in cortex layers IV–VI on the first and third days of ischemia is typical for all studied neurotrophins. In supragranular layers, their amount remains relatively stable or is slightly reduced as compared with the control. On the eighth day of ischemia, neurotrophins are almost not detected in neurons in the stroke nucleus, while the induction of immunoreactivity occurs in the penumbra. In the penumbra, NT-3-immunoreactive neurons prevail in layers II–III, BDNF is detected in neurons of layers II–III and V, while astrocytes constitute the main population of GDNF-immunoreactive cells. The topography of neurotrophins in the contralateral hemisphere repeats the pattern of their localization in the area of the penumbra. A heterogeneous stratification of neurotrophins and their selective response to ischemic injury are determined by their different involvement in maintaining cytoprotective and neurodestructive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Andjelic, S., Gallopin, T., Cauli, B., Hill, E.L., Roux, L., Badr, S., Hu, E., Tamás, G., and Lambolez, B., Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons, J. Neurophysiol., 2009, vol. 101, p. 641.

    Article  CAS  Google Scholar 

  2. Barteczek, P., Li, L., Ernst, A.S., Böhler, L.I., Marti, H.H., and Kunze, R., Neuronal HIF-1α and HIF-2α deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke, J. Cereb. Blood Flow Metab., 2017, vol. 37, p. 291.

    Article  CAS  Google Scholar 

  3. Beker, M., Caglayan, A.B., Beker, M.C., Altunay, S., Karacay, R., Dalay, A., Altintas, M.O., Kose, G.T., Hermann, D.M., and Kilic, E., Lentivirally administered glial cell line-derived neurotrophic factor promotes post-ischemic neurological recovery, brain remodeling and contralesional pyramidal tract plasticity by regulating axonal growth inhibitors and guidance proteins, Exp. Neurol., 2020, vol. 331, art. ID 113364. https://doi.org/10.1016/j.expneurol.2020.113364

    Article  CAS  PubMed  Google Scholar 

  4. Bothwell, M., NGF, BDNF, NT3, and NT4, Handb. Exp. Pharmacol., 2014, vol. 220, p. 3.

    Article  CAS  Google Scholar 

  5. Boyce, V.S. and Mendell, L.M., Neurotrophic factors in spinal cord injury, Handb. Exp. Pharmacol., 2014, vol. 220, p. 443.

    Article  CAS  Google Scholar 

  6. Bronfman, F.C., Lazo, O.M., Flores, C., and Escudero, C.A., Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function, Handb. Exp. Pharmacol., 2014, vol. 220, p. 33.

    Article  CAS  Google Scholar 

  7. del Zoppo, G.J., Sharp, F.R., Heiss, W.D., and Albers, G.W., Heterogeneity in the penumbra, J. Cereb. Blood Flow Metab., 2011, vol. 31, p. 1836.

    Article  Google Scholar 

  8. Dmitrieva, V.G., Stavchansky, V.V., Povarova, O.V., Skvortsova, V.I., Limborska, S.A., and Dergunova, L.V., Effects of ischemia on the expression of neurotrophins and their receptors in rat brain structures outside the lesion site, including on the opposite hemisphere, Mol. Biol. (Moscow), 2016, vol. 50, no. 5, p. 775.

    Article  CAS  Google Scholar 

  9. Ibáñez, C.F. and Andressoo, J.O., Biology of GDNF and its receptors—relevance for disorders of the central nervous system, Neurobiol. Dis., 2017, vol. 97, part B, p. 80.

  10. Jiang, M.Q., Zhao, Y.Y., Cao, W., Wei, Z.Z., Gu, X., Wei, L., and Yu, S.P., Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice, Brain Pathol., 2017, vol. 27, p. 480.

    Article  CAS  Google Scholar 

  11. Kalinichenko, S.G., Korobtsov, A.V., Matveeva, N.Y., and Pushchin, I.I., Structural and chemical changes in glial cells in the rat neocortex induced by constant occlusion of the middle cerebral artery, Acta Histochem., 2020a, vol. 122, art. ID 151573. https://doi.org/10.1016/j.acthis.2020.151573

    Article  CAS  PubMed  Google Scholar 

  12. Kalinichenko, S.G., Matveeva, N.Y., and Korobtsov, A.V., Brain-derived neurotrophic factor (BDNF) as a regulator of apoptosis under conditions of focal experimental stroke, Bull. Exp. Biol. Med., 2020b, vol. 169, no. 5, p. 701.

    Article  CAS  Google Scholar 

  13. Ke, R.H., Xiong, J., and Liu, Y., Adenosine A2a receptor induces GDNF expression by the Stat3 signal in vitro, Neuroreport, 2012, vol. 23, p. 958.

    Article  CAS  Google Scholar 

  14. Koizumi, J., Yoshida, Y., Nakazawa, T., and Ooneda, G., Experimental studies of ischemic brain edema: 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area, Jpn. J. Stroke, 1986, vol. 8, p. 1.

    Article  Google Scholar 

  15. Korobtsov, A.V. and Kalinichenko, S.G., The experimental strategies in the study of ischemic stroke, Zh. Nevrol. Psikhiatr. im S. S. Korsakova, 2017, vol. 117, no. 12-2, p. 38.

  16. Liu, Z. and Chopp, M., Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke, Prog. Neurobiol., 2016, vol. 144, p. 103.

    Article  CAS  Google Scholar 

  17. Liu, W., Wang, X., O’Connor, M., Wang, G., and Han, F., Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities, Neural Plast., 2020, vol. 2020, art ID 1969482. https://doi.org/10.1155/2020/1969482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McConnell, H.L., Kersch, C.N., Woltjer, R.L., and Neuwelt, E.A., The translational significance of the neurovascular unit, J. Biol. Chem., 2017, vol. 292, p. 762.

    Article  CAS  Google Scholar 

  19. Miranda, M., Morici, J.F., Zanoni, M.B., and Bekinschtein, P., Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain, Front. Cell Neurosci., 2019, vol. 13, p. 363. https://doi.org/10.3389/fncel.2019.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mitroshina, E.V., Mishchenko, T.A., Shishkina, T.V., and Vedunova, M.V., Role of neurotrophic factors BDNF and GDNF in nervous system adaptation to the influence of ischemic factors, Bull. Exp. Biol. Med., 2019a, vol. 167, p. 574.

    Article  CAS  Google Scholar 

  21. Mitroshina, E.V., Mishchenko, T.A., Shirokova, O.M., Astrakhanova, T.A., Loginova, M.M., Epifanova, E.A., Babaev, A.A., Tarabykin, V.S., and Vedunova, M.V., Intracellular neuroprotective mechanisms in neuron-glial networks mediated by glial cell line-derived neurotrophic factor, Oxid Med. Cell Longev., 2019b, vol. 2019, art. ID 1036907. https://doi.org/10.1155/2019/1036907

    Article  CAS  Google Scholar 

  22. Popova, N.K., Ilchibaeva, T.V., and Naumenko, V.S., Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain, Biochemistry (Moscow), 2017, vol. 82, no. 3, p. 308.

    CAS  PubMed  Google Scholar 

  23. Pöyhönen, S., Er, S., Domanskyi, A., and Airavaara, M., Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury, Front. Physiol., 2019, vol. 10, p. 486. https://doi.org/10.3389/fphys.2019.00486

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rahman, M., Luo, H., Sims, N.R., Bobrovskaya, L., and Zhou, X.F., Investigation of mature BDNF and proBDNF signaling in a rat photothrombotic ischemic model, Neurochem. Res., 2018, vol. 43, p. 637.

    Article  CAS  Google Scholar 

  25. Sarkar, S., Chakraborty, D., Bhowmik, A., and Ghosh, M.K., Cerebral ischemic stroke: cellular fate and therapeutic opportunities, Front. Biosci., 2019, vol. 24, p. 435.

    Article  Google Scholar 

  26. Sasi, M., Vignoli, B., Canossa, M., and Blum, R., Neurobiology of local and intercellular BDNF signaling, Pflugers Arch., 2017, vol. 469, p. 593.

    Article  Google Scholar 

  27. Sims, S.K., Rizzo, A., Howard, K., Farrand, A., Boger, H., and Adkins, D.L., Comparative enhancement of motor function and BDNF expression following different brain stimulation approaches in an animal model of ischemic stroke, Neurorehabil. Neural Repair, 2020, vol. 34, p. 925.

    Article  Google Scholar 

  28. Sommer, C.J., Ischemic stroke: experimental models and reality, Acta Neuropathol., 2017, vol. 133, p. 245.

    Article  Google Scholar 

  29. Sommer, C. and Kiessling, M., Ischemia and ischemic tolerance induction differentially regulate protein expression of GluR1, GluR2, and AMPA receptor binding protein in the gerbil hippocampus: GluR2 (GluR-B) reduction does not predict neuronal death, Stroke, 2002, vol. 33, p. 1093.

    Article  CAS  Google Scholar 

  30. Witte, O.W., Bidmon, H.J., Schiene, K., Redecker, C., and Hagemann, G., Functional differentiation of multiple perilesional zones after focal cerebral ischemia, J. Cereb. Blood Flow Metab., 2000, vol. 20, p. 1149.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of planned theme no. 01201350008 of the Pacific State Medical University, Ministry of Health of the Russian Federation (Vladivostok).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kalinichenko.

Ethics declarations

Conflict of interest. The authors state that they have no conflict of interest.

Statement on the welfare of animals. The experiments on animals were carried out according to the Directive 2010/63/EU of the European Union in 2010. All the experimental procedures were approved by the interdisciplinary Ethics Committee of Pacific State Medical University, Ministry of Health of the Russian Federation (protocol no. 4 of March 6, 2013).

Additional information

Translated by A. Barkhash

Abbreviations: BDNF, brain derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; NT-3, neurotrophin-3; NTs, neurotrophins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinichenko, S.G., Korobtsov, A.V. & Matveeva, N.Y. Immunolocalization of BDNF, GDNF, and NT-3 in the Rat Parietal Cortex with Permanent Occlusion of the Middle Cerebral Artery. Cell Tiss. Biol. 16, 213–222 (2022). https://doi.org/10.1134/S1990519X2203004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X2203004X

Keywords:

Navigation