Skip to main content
Log in

Characteristics of Umbilical-Cord Blood and Its Use in Clinical Practice

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

This paper provides a brief description of the components of umbilical-cord blood (CB). It consider the application of CB and its components, more specifically, mesenchymal stem cells, in experimental biology and medicine to activate the regeneration of organs and tissues, as part of complex measures for the treatment of chronic diseases of various origin (blood diseases and primary immunodeficiencies, neurodegenerative diseases, myocardial infarction, obesity, diabetes mellitus, liver cirrhosis, immune-dependent and autoimmune pathologies, etc.). The review also considers the use of CB serum (plasma) in postoperative recovery for the treatment of eye and neurodegenerative diseases and age-related changes. The possibility of using CB to enrich culture media for the growth of various cell cultures employed in regenerative medicine is described. The importance and necessity of standardization of methods for obtaining CB and its components, their testing and routes of administration, and regulations for the use of CB and its components in clinical practice is emphasized. The review focuses on the use of CB and its components in experimental biology to model the processes of reparation and regeneration of tissues and organs in model animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abdelmawgoud, H. and Saleh, A., Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model, Adv. Clin. Exp. Med., 2018, vol. 27, p. 873. https://doi.org/10.17219/acem/73720

    Article  PubMed  Google Scholar 

  2. Acosta, S.A., Tajiri, N., Shinozuka, K., Ishikawa, H., Sanberg, P.R., Sanchez-Ramos, J., Song, S., Kaneko, Y., and Borlongan, C.V., Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury, PLoS One, 2014, vol. 9, art. e90953. https://doi.org/10.1371/journal.pone.0090953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Algeri, M., Gaspari, S., and Locatelli, F., Cord blood transplantation for acute leukemia, Expert Opin. Biol. Ther., 2020, vol. 20, p. 1223. https://doi.org/10.1080/14712598.2020.1782380

    Article  PubMed  Google Scholar 

  4. Anitua, E., de la Fuente, M., Muruzabal, F., Riestra, A., Merayo-Lloves, J., and Orive, G., Plasma rich in growth factors (PRGF) eye drops stimulates scarless regeneration compared to autologous serum in the ocular surface stromal fibroblasts, Exp. Eye Res., 2015, vol. 135, p. 118. https://doi.org/10.1016/j.exer.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  5. Aziz, J., Liao, G., Adams, Z., Rizk, M., Shorr, R., and Allan, D.S., Systematic review of controlled clinical studies using umbilical cord blood for regenerative therapy: identifying barriers to assessing efficacy, Cytotherapy, 2019, vol. 21, p. 1112. https://doi.org/10.1016/j.jcyt.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  6. Balasubramanian, H., Malpani, P., Sindhur, M., Kabra, N.S., Ahmed, J., and Srinivasan, L., Effect of umbilical cord blood sampling versus admission blood sampling on requirement of blood transfusion in extremely preterm infants: a randomized controlled trial, J. Pediatr., 2019, vol. 211, p. 39. https://doi.org/10.1016/j.jpeds.2019.04.033

    Article  PubMed  Google Scholar 

  7. Basile, S., Pinelli, S., Micelli, E., Caretto, M., and Panici, P.B., Milking of the umbilical cord in term and late preterm infants, Biomed. Res. Int., 2019, vol. 2019, art. 9185059. https://doi.org/10.1155/2019/9185059

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bernabei, F., Roda, M., Buzzi, M., Pellegrini, M., Giannaccare, G., and Versura, P., Blood-based treatments for severe dry eye disease: the need of a consensus, J. Clin. Med., 2019, vol. 8, p. 1478. https://doi.org/10.3390/jcm8091478

    Article  CAS  PubMed Central  Google Scholar 

  9. Bianchi, M., Papacci, P., Valentini, C.G., Barbagallo, O., Vento, G., and Teofili, L., Umbilical cord blood as a source for red-blood-cell transfusion in neonatology: a systematic review, Vox. Sang, 2018, vol. 113, p. 713. https://doi.org/10.1111/vox.12720

    Article  PubMed  Google Scholar 

  10. Blázquez-Prunera, A., Díez, J.M., Gajardo, R., and Grancha, S., Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction, Stem Cell Res. Ther., 2017, vol. 8, p. 103. https://doi.org/10.1186/s13287-017-0552-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bojanic, C., To, K., Zhang, B., Mak, C., and Khan, W.S., Human umbilical cord derived mesenchymal stem cells in peripheral nerve regeneration, World J. Stem Cells, 2020, vol. 12, p. 288. https://doi.org/10.4252/wjsc.v12.i4.288

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cable, J., Fuchs, E., Weissman, I., Jasper, H., Glass, D., Rando, T.A., Blau, H., Debnath, S., Oliva, A., Park, S., Passegué, E., Kim, C., and Krasnow, M.A., Adult stem cells and regenerative medicine-a symposium report, Ann. N.Y. Acad. Sci., 2020, vol. 1462, p. 27. https://doi.org/10.1111/nyas.14243

    Article  PubMed  Google Scholar 

  13. Cai, J., Wu, Z., Xu, X., Liao, L., Chen, J., Huang, L., Wu, W., Luo, F., Wu, C., Pugliese, A., Pileggi, A., Ricordi, C., and Tan, J., Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion, Diabetes Care, 2016, vol. 39, p. 149. https://doi.org/10.2337/dc15-0171

    Article  CAS  PubMed  Google Scholar 

  14. Caseiro, A.R., Ivanova, G., Pedrosa, S.S., Branquin-ho, M.V., Georgieva, P., Barbosa, P.P., Santos, J.D., Magalhães, R., Teixeira, P., Pereira, T., and Maurício, A.C., Human umbilical cord blood plasma as an alternative to animal sera for mesenchymal stromal cells in vitro expansion—a multicomponent metabolomic analysis, PLoS One, 2018, vol. 13, no. 10, art. e0203936. https://doi.org/10.1371/journal.pone.0203936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castellano, J.M., Mosher, K.I., Abbey, R.J., McBride, A.A., James, M.L., Berdnik, D., Shen, J.C., Zou, B., Xie, X.S., Tingle, M., Hinkson, I.V., Angst, M.S., and Wyss-Coray, T., Human umbilical cord plasma proteins revitalize hippocampal function in aged mice, Nature, 2017, vol. 544, p. 488. https://doi.org/10.1038/nature22067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cesaro, S., Pillon, M., Sauer, M., Smiers, F., Faraci, M., de, Heredia, C.D., Wynn, R., Greil, J., Locatelli, F., Veys, P., Uyttebroeck, A., Ljungman, P., Chevalier, P., Ansari, M., Badell, I., et al., Long-term outcome after allogeneic hematopoietic stem cell transplantation for Shwachman–Diamond syndrome: a retrospective analysis and a review of the literature by the Severe Aplastic Anemia Working Party of the European Society for blood and marrow transplantation (SAAWP-EBMT). Bone Marrow Transplant., 2020, vol. 55, p. 1796. https://doi.org/10.1038/s41409-020-0901-x

    Article  CAS  PubMed  Google Scholar 

  17. Chen, P., Huang, Q., Xu, X.J., Shao, Z.L., Huang, L.H., Yang, X.Z., Guo, W., Li, C.M., and Chen, C., The effect of liraglutide in combination with human umbilical cord mesenchymal stem cells treatment on glucose metabolism and β cell function in type 2 diabetes mellitus, Zhonghua Nei Ke Za Zhi, 2016, vol. 55, p. 349. https://doi.org/10.3760/cma.j.issn.0578-1426.2016.05.004

    CAS  PubMed  Google Scholar 

  18. Chen, H.X., Liang, F.C., Gu, P., Xu, B.L., Xu, H.J., Wang, W.T., Hou, J.Y., Xie, D.X., Chai, X.Q., and An, S.J., Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy, Cell Death Dis., 2020, vol. 11, p. 288. https://doi.org/10.1038/s41419-020-2473-5

    Article  CAS  Google Scholar 

  19. Cho, H.-M., Kim, P.-H., Chang, H.-K., Shen, Y.-M., Bonsra, K., Kang, B.-J., Yum, S.-Y., Kim, J.-H., Lee, S.-Y., Choi, M.-C., Kim, H.H., Jang, G., and Cho, J.-Y., Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: potential implications for the treatment of myocardial infarction, Stem Cells Transl. Med., 2017, vol. 6, p. 1040. https://doi.org/10.1002/sctm.16-0114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho, M.S., Modi, P., and Sharma, S., Transfusion-Related Acute Lung Injury (TRALI), Treasure Island (FL): StatPearls Publishing, 2020. https://www.ncbi.nlm.nih.gov/books/NBK507846/.

  21. Cisneros, G.S., and Thein, S.L., Recent advances in the treatment of sickle cell disease, Front. Physiol., 2020, vol. 11, p. 435. https://doi.org/10.3389/fphys.2020.00435

    Article  Google Scholar 

  22. Cohen, S., Roy, J., Lachance, S., Delisle, J.S., Marinier, A., Busque, L., Roy, D.C., Barabé, F., Ah-mad, I., Bambace, N., Bernard, L., Kiss, T., Bouchard, P., Caudrelier, P., Landais, S., Larochelle, F., et al., Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study, Lancet Haematol., 2020, vol. 7, art. e134. https://doi.org/10.1016/S2352-3026(19)30202-9

    Article  PubMed  Google Scholar 

  23. Damien, P. and Allan, D.S., Regenerative therapy and immune modulation using umbilical cord blood-derived cells, Biol. Blood Marrow Transplant., 2015, vol. 21, p. 1545. https://doi.org/10.1016/j.bbmt.2015.05.022

    Article  PubMed  Google Scholar 

  24. Dauber, K., Becker, D., Odendahl, M., Seifried, E., Bonig, H., and Tonn, T., Enumeration of viable CD34(+) cells by flow cytometry in blood, bone marrow and cord blood: results of a study of the novel BD™ stem cell enumeration kit, Cytotherapy, 2011, vol. 13, p. 449. https://doi.org/10.3109/14653249.2010.529894

    Article  CAS  PubMed  Google Scholar 

  25. Ding, Y., Lu, Z., Yuan, Y., Wang, X., Li, D., and Zeng, Y., Comparison of human cord blood mesenchymal stem cell culture between using human umbilical cord plasma and using fetal bovine serum, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2013, vol. 30, p. 1279. https://pubmed.ncbi. nlm.nih.gov/24645612./

    Google Scholar 

  26. Ehrhart, J., Sanberg, P.R., and Garbuzova-Davis, S., Plasma derived from human umbilical cord blood: potential cell-additive or cell-substitute therapeutic for neurodegenerative diseases, J. Cell Mol. Med., 2018, vol. 22, p. 6157. https://doi.org/10.1111/jcmm.13898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faivre, L., Couzin, C., Boucher, H., Domet, T., Desproges, A., Sibony, O., Bechard, M., Vanneaux, V., Larghero, J., and Cras, A., Associated factors of umbilical cord blood collection quality, Transfusion, 2018, vol. 58, p. 520. https://doi.org/10.1111/trf.14447

    Article  PubMed  Google Scholar 

  28. Foell, J., Kleinschmidt, K., Jakob, M., Troeger, A., and Corbacioglu, S., Alternative donor: Aß/CD19 T-cell-depleted haploidentical hematopoietic stem cell transplantation for sickle cell disease, Hematol. Oncol. Stem Cell Ther., 2020, vol. 13, p. 98. https://doi.org/10.1016/j.hemonc.2019.12.006

    Article  CAS  PubMed  Google Scholar 

  29. Giannaccare, G., Versura, P., Buzzi, M., Primavera, L., Pellegrini, M., and Campos, E.C., Blood derived eye drops for the treatment of cornea and ocular surface diseases, Transfus. Apher. Sci., 2017, vol. 56, p. 595. https://doi.org/10.1016/j.transci.2017.07.023

    Article  PubMed  Google Scholar 

  30. Habib, A., Hou, H., Mori, T., Tian, J., Zeng, J., Fan, S., Giunta, B., Sanberg, P.R., Sawmiller, D., and Tan, J., Human umbilical cord blood serum-derived A-secretase: functional testing in Alzheimer’s disease mouse models, Cell Transplant., 2018, vol. 27, p. 438. https://doi.org/10.1177/0963689718759473

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hassall, O.W., Thitiri, J., Fegan, G., Hamid, F., Mwarumba, S., Denje, D., Wambua, K., Mandaliya, K., Maitland, K., and Bates, I., Safety and efficacy of allogeneic umbilical cord red blood cell transfusion for children with severe anaemia in a Kenyan hospital: an open-label single-arm trial, Lancet Haematol., 2015, vol. 2. art. e101. https://doi.org/10.1016/S2352-3026(15)00005-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. He, B., Li, X., Yu, H., and Zhou, Z., Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus, J. Diabetes, 2015, vol. 7, p. 762. https://doi.org/10.1111/1753-0407.12286

    Article  CAS  PubMed  Google Scholar 

  33. Hosseini, S.R., Kaka, G., Joghataei, M.T., Hooshmandi, M., Sadraie, S.H., Yaghoobi, K., and Mohammadi, A., Assessment of neuroprotective properties of Melissa officinalis in combination with human umbilical cord blood stem cells after spinal cord injury, ASN Neuro, 2016, vol. 8, art. 1759091416674833. https://doi.org/10.1177/1759091416674833

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hsu, J., Artz, A., Mayer, S.A., Guarner, D., Bishop, M.R., Reich-Slotky, R., Smith, S.M., Greenberg, J., Kline, J., Ferrante, R., Phillips, A.A., Gergis, U., Liu, H., Stock, W., Cushing, M., et al., Combined haploidentical and umbilical cord blood allogeneic stem cell transplantation for high-risk lymphoma and chronic lymphoblastic leukemia, Biol. Blood Marrow Transplant., 2018, vol. 24, p. 359. https://doi.org/10.1016/j.bbmt.2017.10.040

    Article  PubMed  Google Scholar 

  35. Hu, Y., Xu, R., Chen, C.-Y., Rao, S.-S., Xia, K., Huang, J., Yin, H., Wang, Z.-X., Cao, J., Liu, Z.-Z., Tan, Y.-J., Luo, J., and Xie, H., Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice, Metabolism, 2019, vol. 95, p. 93. https://doi.org/10.1016/j.metabol.2019.01.009

    Article  CAS  PubMed  Google Scholar 

  36. Hua, R., Li, P., Wang, X., Yang, J., Zheng, P., Niu, X., Li, Y., and An, Y., Evaluation of somatosensory evoked potential and pain rating index in a patient with spinal cord injury accepted cell therapy, Pain Physician, 2016, vol. 19, art. E659. https://pubmed.ncbi.nlm.nih.gov/27228535/.

    PubMed  Google Scholar 

  37. Huang C.W. and Jiang, H., Research advances in transplantation for thalassemia major, Zhongguo Dang Dai Er Ke Za Zhi, 2020, vol. 22, p. 77. http://www.zgddek. com/EN/Y2020/V22/I1/77.

    PubMed  Google Scholar 

  38. Huang, L., Critser, P.J., Grimes, B.R., and Yoder, M.C., Human umbilical cord blood plasma can replace fetal bovine serum for in vitro expansion of functional human endothelial colony-forming cells, Cytotherapy, 2011, vol. 13, p. 712. https://doi.org/10.3109/14653249.2010.548380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hwang, S., Choi, J., and Kim, M., Combining human umbilical cord blood cells with erythropoietin enhances angiogenesis/neurogenesis and behavioral recovery after stroke, Front. Neurol., 2019, vol. 10, p. 357. https://doi.org/10.3389/fneur.2019.00357

    Article  PubMed  PubMed Central  Google Scholar 

  40. Isaev, A.A., Deev, R.V., Kuliev, A., Plaxa, I.L., Stancheva, N.V., Borovkova, A.S., Potapov, I.V., Pomerantseva, E.A., Chogovadze, A.G., Boyarsky, K.Y., Semenenko, A.E., Mikhailov, A.V., Shevchenko, K.G., Prikhodko, A.V., Rechitsky, S., et al., First experience of hematopoietic stem cell transplantation treatment of Shwachman–Diamond syndrome using unaffected HLA-matched sibling donor produced through preimplantation HLA typing, Bone Marrow Transplant., 2017, vol. 52, p. 1249. https://doi.org/10.1038/bmt.2017.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiao, Y., Li, X.Y., and Liu, J., A new approach to cerebral palsy treatment: discussion of the effective components of umbilical cord blood and its mechanisms of action, Cell Transplant., 2019, vol. 28, p. 497. https://doi.org/10.1177/0963689718809658

    Article  PubMed  Google Scholar 

  42. Joseph, J.J., Abraham, A.A., and Fitzhugh, C.D., When there is no match, the game is not over: alternative donor options for hematopoietic stem cell transplantation in sickle cell disease, Semin. Hematol., 2018, vol. 55, p. 94. https://doi.org/10.1053/j.seminmatol.2018.04.013

    Article  PubMed  Google Scholar 

  43. Jung, J.-A., Yoon, Y.-D., Lee, H.-W., Kang, S.-R., and Han, S.-K., Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts, Int. Wound J., 2018, vol. 15, p. 133. https://doi.org/10.1111/iwj.12849

    Article  PubMed  Google Scholar 

  44. Kapoor, S., Shenoy, S.P., and Bose, B., CD34 cells in somatic, regenerative and cancer stem cells: developmental biology, cell therapy, and omics big data perspective, J. Cell Biochem., 2020, vol. 121, p. 3058. https://doi.org/10.1002/jcb.29571

    Article  CAS  PubMed  Google Scholar 

  45. Karantanos, T., Kim, H.T., Tijaro-Ovalle, N.M., Li, L., Cutler, C., Antin, J.H., Ballen, K., Marty, F.M., Tan, C.S., Ritz, J., Politikos, I., and Boussiotis, V., Reactivation of BK virus after double umbilical cord blood transplantation in adults correlates with impaired reconstitution of CD4+ and CD8+ T effector memory cells and increase of T regulatory cells, Clin. Immunol., 2019, vol. 207, p. 18. https://doi.org/10.1016/j.clim.2019.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katheria, A., Reister, F., Essers, J., Mendler, M., Hummler, H., Subramaniam, A., Carlo, W., Tita, A., Truong, G., Davis-Nelson, S., Schmölzer, G., Chari, R., Kaempf, J., Tomlinson, M., Yanowitz, T., et al., Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants, JAMA, 2019, vol. 322, p. 1877. https://doi.org/10.1001/jama.2019.16004

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kiernan, J., Damien, P., Monaghan, M., Shorr, R., McIntyre, L., Fergusson, D., Tinmouth, A., and Allan, D., Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review, Transfus. Med. Rev., 2017, vol. 31, p. 173. https://doi.org/10.1016/j.tmrv.2016.12.004

    Article  PubMed  Google Scholar 

  48. Kockerling, D., Nathwani, R., Forlano, R., Manousou, P., Mullish, B.H., and Dhar, A., Current and future pharmacological therapies for managing cirrhosis and its complications, World J. Gastroenterol., 2019, vol. 25, p. 888. https://doi.org/10.3748/wjg.v25.i8.888

    Article  PubMed  PubMed Central  Google Scholar 

  49. Konuma, T., Tsukada, N., Kanda, J., Uchida, N., Ohno, Y., Miyakoshi, S., Kanamori, H., Hidaka, M., Sakura, T., Onizuka, M., Kobayashi, N., Sawa, M., Eto, T., Matsuhashi, Y., Kato, K., et al., Donor/Source Working Group of the Japan Society for Hematopoietic Cell Transplantation, Comparison of transplant outcomes from matched sibling bone marrow or peripheral blood stem cell and unrelated cord blood in patients 50 years or older, Am. J. Hematol., 2016, vol. 91, art. E284. https://doi.org/10.1002/ajh.24340

    Article  PubMed  Google Scholar 

  50. Kundu, S., Gurney, M., and O’Dwyer, M., Generating natural killer cells for adoptive transfer: expanding horizons, Cytotherapy, 2021, art. S1465. https://doi.org/10.1016/j.jcyt.2020.12.002

  51. Kwok, Y.K., Tang, M.H., Law, H.K., Ngai, C.S., Lau, Y.L., and Lau, E.T., Maternal plasma or human serum albumin in wash buffer enhances enrichment and ex vivo expansion of human umbilical cord blood CD34+ cells, Br. J. Haematol., 2007, vol. 137, p. 468. https://doi.org/10.1111/j.1365-2141.2007.06606.x

    Article  PubMed  Google Scholar 

  52. Laskowitz, D.T., Bennett, E.R., Durham, R.J., Volpi, J.J., Wiese, J.R., Frankel, M., Shpall, E., Wilson, J.M., Troy, J., and Kurtzberg, J., Allogeneic umbilical cord blood infusion for adults with ischemic stroke: clinical outcomes from a phase I safety study, Stem Cells Transl. Med., 2018, vol. 7, p. 521. https://doi.org/10.1002/sctm.18-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J.Y., Tuazon, J.P., Ehrhart, J., Sanberg, P.R., and Borlongan, C.V., Gutting the brain of inflammation: a key role of gut microbiome in human umbilical cord blood plasma therapy in Parkinson’s disease model, J. Cell Mol. Med., 2019, vol. 23, p. 5466. https://doi.org/10.1111/jcmm.14429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, B., Cheng, Y., Yu, S., Zang, L., Yin, Y., Liu, J., Zhang, L., and Mu, Y., Human umbilical cord-derived mesenchymal stem cell therapy ameliorates nonalcoholic fatty liver disease in obese type 2 diabetic mice, Stem Cells Int., 2019, vol. 2019, art. 8628027. https://doi.org/10 .1155/2019/8628027

    PubMed  PubMed Central  Google Scholar 

  55. Li, C. and Huang, B., CAR-transduced natural killer cells, N. Engl. J. Med., 2020, vol. 382, p. 1865. https://doi.org/10.1056/NEJMc2004226

    Article  PubMed  Google Scholar 

  56. Li, X.-Y., Zheng, Z.-H., Li, X.-Y., Guo, J., Zhang, Y., Li, H., Wang, Y.-W., Ren, J., and Wu, Z.-B., Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies, Curr. Pharm. Des., 2013, vol. 19, p. 4893. https://doi.org/10.2174/13816128113199990326

    Article  CAS  PubMed  Google Scholar 

  57. Liang, J., Zhang, H., Zhao, C., Wang, D., Ma, X., Zhao, S., Wang, S., Niu, L., and Sun, L., Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases, Int. J. Rheum. Dis., 2017, vol. 20, p. 1219. https://doi.org/10.1111/1756-185X.13015

    Article  CAS  PubMed  Google Scholar 

  58. Lim, M., Wang, W., Liang, L., Han, Z.B., Li, Z., Geng, J., Zhao, M., Jia, H., Feng, J., Wei, Z., Song, B., Zhang, J., Li, J., Liu, T., Wang, F., et al., Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction, Stem Cell Res. Ther., 2018, vol. 9, p. 129. https://doi.org/10.1186/s13287-018-0888-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, C.-H., Lin, W., Su, Y.-C., Hsuan, Y.C.-Y., Chen, Y.-C., Chang, C.-P., Chou, W., and Lin, K.-C., Modulation of parietal cytokine and chemokine gene profiles by mesenchymal stem cell as a basis for neurotrauma recovery, Formos. Med. Assoc., 2019, vol. 118, p. 1661. https://doi.org/10.1016/j.jfma.2019.01.008

    Article  CAS  Google Scholar 

  60. Litvinova, L.S., Goncharov, A.G., Shupletsova, V.V., Gazatova, N.D., Melashchenko, O.B., Yurova, K.A., and Pestrikova, A.A., Analysis of the legal regulation of the use of umbilical cord blood and its components in the Russian Federation and abroad, Geny Kletki, 2020, vol. 15, no. 4, p. 88. https://doi.org/10.23868/202012014

    Article  Google Scholar 

  61. Liu, E., Marin, D., Banerjee, P., Macapinlac, H.A., Thompson, P., Basar, R., Nassif Kerbauy, L., Ove-rman, B., Thall, P., Kaplan, M., Nandivada, V., Kaur, I., Nunez Cortes, A., Cao, K., Daher, M., et al., Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors, N. Engl. J. Med., 2020, vol. 382, p. 545. https://doi.org/10.1056/NEJMoa1910607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lopriore, E., Updates in red blood cell and platelet transfusions in preterm neonates, Am. J. Perinatol., 2019, vol. 36, p. S37. https://doi.org/10.1055/s-0039-1691775

    Article  Google Scholar 

  63. Loukogeorgakis, S.P., Shangaris, P., Bertin, E., Fran-zin, C., Piccoli, M., Pozzobon, M., Subramaniam, S., Tedeschi, A., Kim, A.G., Li, H., Fachin, C.G., Dias, A.I.B.S., Stratigis, J.D., Ahn, N.J., Thrasher, A.J., et al., In utero transplantation of expanded autologous amniotic fluid stem cells results in long-term hematopoietic engraftment, Stem Cells, 2019, vol. 37, p. 1176. https://doi.org/10.1002/stem.3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mackensen, A., Dräger, R., Schlesier, M., Mertelsmann, R., and Lindemann, A., Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells, Cancer Immunol. Immunother., 2000, vol. 49, p. 152. https://doi.org/10.1007/s002620050614

    Article  CAS  Google Scholar 

  65. Mallhi, K.K., Smith, A.R., DeFor, T.E., Lund, T.C., Orchard, P.J., and Miller, W.P., Allele-level HLA matching impacts key outcomes following umbilical cord blood transplantation for inherited metabolic disorders, Biol. Blood Marrow Transplant., 2017, vol. 23, p. 119.

    Article  CAS  Google Scholar 

  66. Mayani, H., Wagner, J.E., and Broxmeyer, H.E., Cord blood research, banking, and transplantation: achievements, challenges, and perspectives, bone marrow transplant, 2020, vol. 55, p. 48. https://doi.org/10.1016/j.bbmt.2016.10.019

  67. McDonald, C.A., Fahey, M.C., Jenkin, G., and Miller, S.L., Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options, Pediatr. Res., 2018, vol. 83, p. 333. https://doi.org/10.1038/pr.2017.236

    Article  CAS  PubMed  Google Scholar 

  68. Mehdipour, A., Ebrahimi, A., Shiri-Shahsavar, M.-R., Soleimani-Rad, J., Roshangar, L., Samiei, M., and Ebrahimi-Kalan, A., The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis, Rev. Neurosci., 2019, vol. 30, p. 857. https://doi.org/10.1515/revneuro-2018-0057

    Article  PubMed  Google Scholar 

  69. Meng, M., Liu, Y., Wang, W., Wei, C., Liu, F., Du, Z., Xie, Y., Tang, W., Hou, Z., and Li, Q., Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis, Am. J. Transl. Res., 2018, vol. 10, p. 212. https://pubmed.ncbi.nlm.nih.gov/29423006/.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Middeldorp, J., Lehallier, B., Villeda, S.A., Miedema, S.S.M., Evans, E., Czirr, E., Zhang, H., Luo, J., Stan, T., Mosher, K.I., Masliah, E., and Wyss-Coray, T., Preclinical assessment of young blood plasma for Alzheimer disease, JAMA Neurol., 2016, vol. 73, p. 1325. https://doi.org/10.1001/jamaneurol.2016.3185

    Article  PubMed  PubMed Central  Google Scholar 

  71. Milano, F., Gooley, T., Wood, B., Woolfrey, A., Flo-wers, M.E., Doney, K., Witherspoon, R., Mielcarek, M., Deeg, J.H., Sorror, M., Dahlberg, A., Sandmaier, B.M., Salit, R., Petersdorf, E., Appelbaum, F.R., and Dela-ney, C., Cord-blood transplantation in patients with minimal residual disease, N. Engl. J. Med., 2016, vol. 375, p. 944. https://doi.org/10.1056/NEJMoa1602074

    Article  PubMed  PubMed Central  Google Scholar 

  72. Min, K., Suh, M.R., Cho, K.H., Park, W., Kang, M.S., Jang, S.J., Kim, S.H., Rhie, S., Choi, J.I., Kim, H.J., Cha, K.Y., and Kim, M., Potentiation of cord blood cell therapy with erythropoietin for children with CP: a 2 × 2 factorial randomized placebo-controlled trial, Stem Cell Res. Ther., 2020, vol. 11, p. 509. https://doi.org/10.1186/s13287-020-02020-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moon, S.H., Lee, C.M., Park, S.H., and Nam, M.J., Effects of hepatocyte growth factor gene-transfected mesenchymal stem cells on dimethylnitrosamine-induced liver fibrosis in rats, Growth Factors, 2019, vol. 37, p. 105. https://doi.org/10.1080/08977194.2019.1652399

    Article  CAS  PubMed  Google Scholar 

  74. Moskalev, A., Chernyagina, E., de, Magalhães, J.P., Barardo, D., Thoppil, H., Shaposhnikov, M., Budovsky, A., Fraifeld, V.E., Garazha, A., Tsvetkov, V., Bronovitsky, E., Bogomolov, V., Scerbacov, A., Kuryan, O., Gurinovich, R., et al., Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease, Aging (Albany NY), 2015, vol. 7, p. 616. https://doi.org/10.18632/aging.100799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mu, K., Zhang, J., Gu, Y., Li, H., Han, Y., Cheng, N., Feng, X., Ding, G., Zhang, R., Zhao, Y., and Wang, H., Cord-derived mesenchymal stem cells therapy for liver cirrhosis in children with refractory Henoch–Schonlein purpura: a case report, Medicine (Baltimore), 2018, vol. 97, art. e13287. https://doi.org/10.1097/MD.0000000000013287

    Article  PubMed  PubMed Central  Google Scholar 

  76. Munro, A., Corsi, D.J., Martin, L., Halpenny, M., Dib-din, N., Elmoazzen, H.E., Walker, M., and Allan, D.S., Obstetrical and neonatal factors associated with optimal public banking of umbilical cord blood in the context of delayed cord clamping, Clin. Invest. Med., 2019, vol. 42, art. E56. https://doi.org/10.25011/cim.v42i3.33093

    Article  PubMed  Google Scholar 

  77. Musiał-Wysocka, A., Kot, M., Sułkowski, M., Badyra, B., and Majka, M., Molecular and functional verification of wharton’s jelly mesenchymal stem cells (WJ-MSCs) pluripotency, Int. J. Mol. Sci., 2019, vol. 20, p. 1807. https://doi.org/10.3390/ijms20081807

    Article  CAS  PubMed Central  Google Scholar 

  78. Myers, J.A. and Miller, J.S., Exploring the NK cell platform for cancer immunotherapy, Nat. Rev. Clin. Oncol., 2020, vol. 18, p. 85. https://doi.org/10.1038/s41571-020-0426-7

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nagano, N., Saito, M., Sugiura, T., Miyahara, F., Namba, F., and Ota, E., Benefits of umbilical cord milking versus delayed cord clamping on neonatal outcomes in preterm infants: a systematic review and meta-analysis, PLoS One, 2018, vol. 13, no. 8. https://doi.org/10.1371/journal.pone.0201528

  80. Ni, J., Liu, X., Yin, Y., Zhang, P., Xu, Y.W., and Liu, Z., Exosomes derived from timp2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway, Oxid. Med. Cell Longev., 2019, vol. 2019, p. 1958941. https://doi.org/10.1155/2019/1958941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ochi, T., Onishi, Y., Nasu, K., Onodera, K., Kobayashi, M., Ichikawa, S., Fujiwara, T., Fukuhara, N., Yamada-Fujiwara, M., and Harigae, H., Umbilical cord blood transplantation using reduced-intensity conditioning without antithymocyte globulin in adult patients with severe aplastic anemia, Biol. Blood Marrow Transplant., 2019, vol. 25, art. e55. https://doi.org/10.1016/j.bbmt.2018.09.039

    Article  PubMed  Google Scholar 

  82. Okur, S.Ç., Erdoğan, S., Demir, C.S., Günel, G., and Karaöz, E., The effect of umbilical cord-derived mesenchymal stem cell transplantation in a patient with cerebral palsy: a case report, Int. J. Stem Cells, 2018, vol. 11, p. 141. https://doi.org/10.15283/ijsc17077

    Article  PubMed  PubMed Central  Google Scholar 

  83. Orlando, N., Pellegrino, C., Valentini, C.G., Bianchi, M., Barbagallo, O., Sparnacci, S., Forni, F., Fontana, T.M., and Teofili, L., Umbilical cord blood: current uses for transfusion and regenerative medicine, Transfus. Apher. Sci., 2020, vol. 59, p. 102952. https://doi.org/10.1016/j.transci.2020.102952

    Article  PubMed  Google Scholar 

  84. Pan, X.-H., Zhu, L., Yao, X., Liu, J.-F., Li, Z.-A., Yang, J.-Y., Pang, R.-Q., and Ruan, G.-P., Development of a tree shrew metabolic syndrome model and use of umbilical cord mesenchymal stem cell transplantation for treatment, Cytotechnology, 2016, vol. 68, p. 2449. https://doi.org/10.1007/s10616-016-9966-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, J.H., Hwang, I., Hwang, S.H., Han, H., and Ha, H., Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action, Diabetes Res. Clin. Pract., 2012, vol. 98, p. 465. https://doi.org/10.1016/j.diabres.2012.09.034

    Article  CAS  PubMed  Google Scholar 

  86. Paul, M., Dayal, D., Bhansali, A., Dhaliwal, L., and Sachdeva, N., In vitro assessment of cord blood-derived proinsulin-specific regulatory T cells for cellular therapy in type 1 diabetes, Cytotherapy, 2018, vol. 20, p. 1355. https://doi.org/10.1016/j.jcyt.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  87. Peng, Y., Chen, B., Zhao, J., Peng, Z., Xu, W., and Yu, G., Effect of intravenous transplantation of HUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice, Biomed. Pharmacother., 2019, vol. 111, p. 624. https://doi.org/10.1016/j.biopha.2018.12.095

    Article  CAS  PubMed  Google Scholar 

  88. Pereira, T., Ivanova, G., Caseiro, A.R., Barbosa, P., Bártolo, P.J., Santos, J.D., Luís, A.L., and Maurício, A.C., MSCs conditioned media and umbilical cord blood plasma metabolomics and composition, PLoS One, 2014, V. 9, art. e113769. https://doi.org/10.1371/journal.pone.0113769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pour, M.S.S., Vahidi, R., Lashkari, M., Derakhshani, A., Ameri, Z., and Farsinejad, A., Cord blood serum harvesting by hydroxyethyl starch: a fetal bovine serum alternative in expansion of umbilical cord-derived mesenchymal stem cells, Cytotechnology, 2020, vol. 72, p. 551. https://doi.org/10.1007/s10616-020-00404-9

    Article  CAS  Google Scholar 

  90. Qi, X., Guo, X., and Su, C., Clinical outcomes of the transplantation of stem cells from various human tissue sources in the management of liver cirrhosis: a systematic review and meta-analysis, Curr. Stem Cell Res. Ther., 2015, vol. 10, p. 166. https://doi.org/10.2174/1574888x09666141112114011

    Article  CAS  PubMed  Google Scholar 

  91. Rabe, H., Gyte, G.M., Díaz-Rossello, J.L., and Duley, L., Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes, Cochrane Database Syst. Rev., 2019, vol. 9, p. CD003248. https://doi.org/10.1002/14651858.CD003248.pub4

    Article  PubMed  Google Scholar 

  92. Rafieemehr, H., Kheirandish, M., and Soleimani, M., Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions, Iran. J. Basic Med. Sci., 2015, vol. 18, p. 1100. https://pubmed.ncbi.nlm.nih.gov/ 26949497/.

    PubMed  PubMed Central  Google Scholar 

  93. Rah, W.J., Lee, Y.H., Moon, J.H., Jun, H.J., Kang, H.R., Koh, H., Eom, H.J., Lee, J.Y., Lee, Y.J., Kim, J.Y., Choi, Y.Y., Park, K., Kim, M.J., and Kim, S.H., Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study, J. Transl. Med., 2017, vol. 15, p. 16. https://doi.org/10.1186/s12967-017-1120-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reddi, A.S., Kothari, N., Kuppasani, K., and Ende, N., Human umbilical cord blood cells and diabetes mellitus: recent advances, Curr. Stem Cell Res. Ther., 2015, vol. 10, p. 266. https://doi.org/10.2174/1574888x10666141212122421

    Article  CAS  PubMed  Google Scholar 

  95. Ren, S., Hu, J., Chen, Y., Yuan, T., Hu, H., and Li, S., Human umbilical cord derived mesenchymal stem cells promote interleukin-17 production from human peripheral blood mononuclear cells of healthy donors and systemic lupus erythematosus patients, Clin. Exp. Immunol., 2016, vol. 183, p. 389. https://doi.org/10.1111/cei.12737

    Article  CAS  PubMed  Google Scholar 

  96. Romanov, Y.A., Vtorushina, V.V., Dugina, T.N., Romanov, A.Y., and Petrova, N.V., Human umbilical cord blood serum/plasma: cytokine profile and prospective application in regenerative medicine, Bull. Exp. Biol. Med., 2019, vol. 168, p. 173. https://doi.org/10.1007/s10517-019-04670-2

    Article  CAS  PubMed  Google Scholar 

  97. Roo, J.J.D. and Staal, F.J.T., Cell signaling pathway reporters in adult, Hematopoietic Stem Cells, 2020, vol. 9, p. 2264. https://doi.org/10.3390/cells9102264

    Article  CAS  Google Scholar 

  98. Rudnicki, J., Kawa, M.P., Kotowski, M., Michalczyk, B., Ustianowski, P., Czajka, R., and Machaliński, B., Clinical evaluation of the safety and feasibility of whole autologous cord blood transplant as a source of stem and progenitor cells for extremely premature neonates: preliminary report, Exp. Clin. Transplant., 2015, vol. 13, p. 563. https://doi.org/10.6002/ect.2015.0081

    Article  PubMed  Google Scholar 

  99. Ruggeri, A., Paviglianiti, A., Gluckman, E., and Rocha, V., Impact of HLA in cord blood transplantation outcomes, HLA, 2016, vol. 87, p. 413. https://doi.org/10.1111/tan.12792

    Article  CAS  PubMed  Google Scholar 

  100. Saito-Benz, M., Flanagan, P., and Berry, M.J., Management of anaemia in pre-term infants, Br. J. Haematol., 2020, vol. 188, p. 354. https://doi.org/10.1111/bjh.16233

    Article  PubMed  Google Scholar 

  101. Saito-Benz, M., Flanagan, P., and Berry, M.J., Management of anaemia in pre-term infants, Br. J. Haematol., 2020, vol. 188, p. 354. https://doi.org/10.1111/bjh.16233

    Article  PubMed  Google Scholar 

  102. Sakurai, Y., Sarashina, T., Toriumi, N., Hatakeyama, N., Kanayama, T., Imamura, T., Osumi, T., Ohki, K., Kiyokawa, N., and Azuma, H., B-cell precursor-acute lymphoblastic leukemia with EBF1-PDGFRB fusion treated with hematopoietic stem cell transplantation and imatinib: a case report and literature review, J. Pediatr. Hematol. Oncol., 2021, vol. 43, p. e105. https://doi.org/10.1097/mph.0000000000001743

    Article  PubMed  Google Scholar 

  103. Sarin, K, Chauhan, S, Bisoi, AK, Hazarika, A, Malhotra, N, and Manek, P., Use of autologous umbilical cord blood transfusion in neonates undergoing surgical correction of congenital cardiac defects: a pilot study, Ann. Card. Anaesth., 2018, vol. 21, p. 270. https://doi.org/10.4103/aca.ACA_194_17

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sha, S.J., Deutsch, G.K., Tian, L., Richardson, K., Coburn, M., Gaudioso, J.L., Marcal, T., Solomon, E., Boumis, A., Bet, A., Mennes, M., van Oort, E., Beck-mann, C.F., Braithwaite, S.P., Jackson, S., et al., Safety, tolerability, and feasibility of young plasma infusion in the plasma for Alzheimer symptom amelioration study: a randomized clinical trial, JAMA Neurol., 2019, vol. 76, p. 35. https://doi.org/10.1001/jamaneurol.2018.3288

    Article  PubMed  Google Scholar 

  105. Shah, F. and Dwivedi, M., Pathophysiology and recent therapeutic insights of sickle cell disease, Ann. Hematol., 2020, vol. 99, p. 925. https://doi.org/10.1007/s00277-020-03977-9

    Article  PubMed  Google Scholar 

  106. Shamriz, O., and Chandrakasan, S., Update on advances in hematopoietic cell transplantation for primary immunodeficiency disorders, Immunol. Allergy Clin. North. Am., 2019, vol. 39, p. 113. https://doi.org/10.1016/j.iac.2018.08.003

    Article  PubMed  Google Scholar 

  107. Sharma, N., Goel, M., Velpandian, T., Titiyal, J.S., Tandon, R., and Vajpayee, R.B., Evaluation of umbilical cord serum therapy in acute ocular chemical burns, Invest. Ophthalmol. Vis. Sci., 2011, vol. 52, p. 1087. https://doi.org/10.1167/iovs.09-4170

    Article  PubMed  Google Scholar 

  108. Shin, T.-H., Kim, H.-S., Kang, T.-W., Lee, B.-C., Lee, H.-Y., Kim, Y.-J., Shin, J.-H., Seo, Y., Choi, S.W., Lee, S., Shin, K., Seo, K.-W., and Kang, K.-S., Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis, Cell Death Dis., 2016, vol. 7, art. e2524. https://doi.org/10.1038/cddis.2016.442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sjövall, D. and Staffas, A., The origin of leukemia: genetic alterations and inflammatory factors in the development of premalignant clonal hematopoiesis, Semin. Hematol., 2020, vol. 57, p. 7. https://doi.org/10.1053/j.seminhematol.2020.05.003

    Article  PubMed  Google Scholar 

  110. Soni, S., Gene therapies for transfusion dependent β-thalassemia: current status and critical criteria for success, Am. J. Hematol., 2020, vol. 95, p. 1099. https://doi.org/10.1002/ajh.25909

    Article  CAS  PubMed  Google Scholar 

  111. Soni, N.G. and Jeng, B.H., Blood-derived topical therapy for ocular surface diseases, Br. J. Ophthalmol., 2016, vol. 100, p. 22. https://doi.org/10.1136/bjophthalmol-2015-306842

    Article  PubMed  Google Scholar 

  112. Stiner, R., Alexander, M., Liu, G., Liao, W., Liu, Y., Yu, J., Pone, E.J., Zhao, W., and Lakey, J.R.T., Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes, Cell Tissue Res., 2019, vol. 378, p. 155. https://doi.org/10.1007/s00441-019-03046-2

    Article  CAS  PubMed  Google Scholar 

  113. Su, Q., Kumar, V., Sud, N., and Mahato, R.I., MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis, Adv. Drug. Deliv. Rev., 2018, vol. 129, p. 54. https://doi.org/10.1016/j.addr.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  114. Sun, Y., Kong, W., Huang, S., Shi, B., Zhang, H., Chen, W., Zhang, H., Zhao, C., Tang, X., Yao, G., Feng, X., and Sun, L., Comparable therapeutic potential of umbilical cord mesenchymal stem cells in collagen-induced arthritis to TNF inhibitor or anti-CD20 treatment, Clin. Exp. Rheumatol., 2017, vol. 35, p. 288. https://pubmed.ncbi.nlm.nih.gov/28094754/.

    PubMed  Google Scholar 

  115. Sun, Y., Shi, H., Yin, S., Ji, C., Zhang, X., Zhang, B., Wu, P., Shi, Y., Mao, F., Yan, Y., Xu, W., and Qian, H., Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving B-cell destruction, ACS Nano, 2018, vol. 12, p. 7613. https://doi.org/10.1021/acsnano.7b07643

    Article  CAS  PubMed  Google Scholar 

  116. Surugiu, R., Olaru, A., Hermann, D.M., Glavan, D., Catalin, B., and Popa-Wagner, A., Recent advances in mono- and combined stem cell therapies of stroke in animal models and humans, Int. J. Mol. Sci., 2019, vol. 20, p. 6029. https://doi.org/10.3390/ijms20236029

    Article  CAS  PubMed Central  Google Scholar 

  117. Swierczek, S. and Prchal, J.T., Clonal hematopoiesis in hematological disorders: three different scenarios, Exp. Hematol., 2020, vol. 83, p. 57. https://doi.org/10.1016/j.exphem.2020.01.013

    Article  CAS  PubMed  Google Scholar 

  118. Tai-Macarthur, S., Lombardi, G., and Shangaris, P., The theoretical basis of in utero hematopoietic stem cell transplantation and its use in the treatment of blood disorders, Stem Cells Dev., 2020, vol. 30, p. 49. https://doi.org/10.1089/scd.2020.0181

    Article  CAS  Google Scholar 

  119. Tanasiychuk, I.S., Mikhailenko, L.P., Malanchuk, O.N., and Fetisova, O.A., General analysis of cord blood as a possible source of hematopoietic stem cells, Lab. Diagn., Vost. Evropa, 2017, vol. 6, no. 3, p. 380. https://docplayer.ru/ 71738670-Obshchiy-analiz-pupovinnoy-krovi-kak-vozmozh-nogo-istochnika-gemopoeticheskih-stvolovyh-kletok.html.

    Google Scholar 

  120. Tao, H., Li, Y., Wang, T., and Zhou, C., Umbilical cord blood stem cells transplantation as an adjunctive treatment strategy for liver cirrhosis in Chinese population: a meta-analysis of effectiveness and safety, Ther. Clin. Risk Manage., 2018, vol. 14, p. 417. https://doi.org/10.2147/TCRM.S157603

    Article  CAS  Google Scholar 

  121. Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., and Shen, Z., Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation, Cell Physiol. Biochem., 2015, vol. 37, p. 2415. https://doi.org/10.1159/000438594

    Article  CAS  PubMed  Google Scholar 

  122. Terashvili, M. and Bosnjak, Z.J., Stem cell therapies in cardiovascular disease, J. Cardiothorac. Vasc. Anesth., 2019, vol. 33, p. 209. https://doi.org/10.1053/j.jvca.2018.04.048

    Article  PubMed  Google Scholar 

  123. Theil, A., Wilhelm, C., Guhr, E., Reinhardt, J., and Bonifacio, E., The relative merits of cord blood as a cell source for autologous T regulatory cell therapy in type 1 diabetes, Horm. Metab. Res., 2015, vol. 47, p. 48. https://doi.org/10.1055/s-0034-1394372

    Article  CAS  PubMed  Google Scholar 

  124. Tuysuz, G., Guler, E., Ozel, D., and Kupesiz, A., Results of allogenic hematopoietic stem cell transplantation in Fanconi anemia caused by bone marrow failure: single-regimen, single-center experience of 14 years, Biol. Blood Marrow Transplant., 2019, vol. 25, p. 2017. https://doi.org/10.1016/j.bbmt.2019.05.039

    Article  PubMed  Google Scholar 

  125. Ulyanova, O., Baigenzhin, A., Doskaliyev, Z, Karibe-kov, T., Kozina, L., Saparbayev, S., and Trimova, R., Transforming growth factor β1 in patients with type 2 diabetes mellitus after fetal pancreatic stem cell transplant, Exp. Clin. Transplant., 2018, vol. 16, p. 168. https://doi.org/10.6002/ect.tond-tdtd2017.p49

    Article  PubMed  Google Scholar 

  126. Vaillant, A.A.J. and Qurie, A., Immunodeficiency, Treasure Island (FL): StatPearls Publishing, 2020. https://www.ncbi.nlm.nih.gov/books/NBK500027/.

  127. Vankeshwaram, V., Maheshwary, A., Mohite, D., Omole, J.A., and Khan, S., Is stem cell therapy the new savior for cerebral palsy patients?, A review, Cureus, 2020, vol. 12, art. e10214. https://doi.org/10.7759/cureus.10214

    Article  PubMed  PubMed Central  Google Scholar 

  128. Venkat, P., Shen, Y., Chopp, M., and Chen, J., Cell-based and pharmacological neurorestorative therapies for ischemic stroke, Neuropharmacology, 2018, vol. 134, p. 310. https://doi.org/10.1016/j.neuropharm.2017.08.036

    Article  CAS  PubMed  Google Scholar 

  129. Wang, D., Niu, L., Feng, X., Yuan, X., Zhao, S., Zhang, H., Liang, J., Zhao, C., Wang, H., Hua, B., and Sun, L., Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study, Clin. Exp. Med., 2017, vol. 17, p. 333. https://doi.org/10.1007/s10238-016-0427-0

    Article  CAS  PubMed  Google Scholar 

  130. Wang, X.L., Zhao, Y.Y., Sun, L., Shi, Y., Li, Z.Q., Zhao, X.D., Xu, C.G., Ji, H.G., Wang, M., Xu, W.R., and Zhu, W., Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7, Int. J. Mol. Med., 2018, vol. 41, p. 3063. https://doi.org/10.3892/ijmm.2018.3496

    Article  CAS  PubMed  Google Scholar 

  131. Wang, Z., He, D., Zeng, Y.Y., Zhu, L., Yang, C., Lu, Y.J., Huang, J.Q., Cheng, X.Y., Huang, X.H., and Tan, X.J., The spleen may be an important target of stem cell therapy for stroke, J. Neuroinflamm., 2019, vol. 16, p. 20. https://doi.org/10.1186/s12974-019-1400-0

    Article  Google Scholar 

  132. Wu, J.Y., Lu, Y., Chen, J.S., Wu, S.Q., Tang, X.W., and Li, Y., Pooled umbilical cord blood plasma for culturing UCMSC and ex vivo expanding umbilical cord blood CD34+ cells, Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2015, vol. 23, p. 1112. https://doi.org/10.7534/j.issn.1009-2137.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  133. Xue, E. and Milano, F., Are we underutilizing bone marrow and cord blood? Review of their role and potential in the era of cellular therapies, F1000Res, F1000, 2020. https://doi.org/10.12688/f1000research.20605.1

  134. Yeng, C.H., Chen, P.J., Chang, H.K., Lo, W.Y., Wu, C.C., Chang, C.Y., Chou, C.H., and Chen, S.H., Attenuating spinal cord injury by conditioned medium from human umbilical cord blood-derived CD34+ cells in rats, Taiwan J. Obstet. Gynecol., 2016, vol. 55, p. 85. https://doi.org/10.1016/j.tjog.2015.12.009

    Article  PubMed  Google Scholar 

  135. Yokota, T., Processes regulating early lymphocyte differentiation, Rinsho Ketsueki, 2020, vol. 61, p. 1048. https://doi.org/10.11406/rinketsu.61.1048

    Article  PubMed  Google Scholar 

  136. Yoo, J., Kim, H.-S., Seo, J.-J., Eom, J.-H., Choi, S.-M., Park, S., Kim, D.-W., and Hwang, D.-Y., Therapeutic effects of umbilical cord blood plasma in a rat model of acute ischemic stroke, Oncotarget, 2016, vol. 7, p. 79131. https://doi.org/10.18632/oncotarget.12998

    Article  PubMed  PubMed Central  Google Scholar 

  137. Yoon, K.C., Use of umbilical cord serum in ophthalmology, Chonnam. Med. J., 2014, vol. 50, p. 82. https://doi.org/10.4068/cmj.2014.50.3.82

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yu, Y., Yoon, K.-A., Kang, T.-W., Jeon, H.-J., Sim, Y.-B., Choe, S.H., Baek, S.Y., Lee, S., Seo, K.-W., and Kang, K.-S., Therapeutic effect of long-interval repeated intravenous administration of human umbilical cord blood-derived mesenchymal stem cells in DBA/1 mice with collagen-induced arthritis, J. Tissue Eng. Regen. Med., 2019, vol. 13, p. 1134. https://doi.org/10.1002/term.2861

    Article  CAS  PubMed  Google Scholar 

  139. Yuan, X., Qin, X., Wang, D., Zhang, Z., Tang, X., Gao, X., Chen, W., and Sun, L., Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients, Nat. Commun., 2019, vol. 10, p. 2498. https://doi.org/10.1038/s41467-019-10491-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yun, H.D., Varma, A., Hussain, M.J., Nathan, S., and Brunstein, C., Clinical relevance of immunobiology in umbilical cord blood transplantation, J. Clin. Med., 2019, vol. 8, p. 1968. https://doi.org/10.3390/jcm8111968

    Article  CAS  PubMed Central  Google Scholar 

  141. Zhang, H., Chen, J., and Que, W., A meta-analysis of unrelated donor umbilical cord blood transplantation versus unrelated donor bone marrow transplantation in acute leukemia patients, Biol. Blood Marrow Transplant., 2012, vol. 18, p. 1164. https://doi.org/10.3748/wjg.v23.i46.8152

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, G.Z., Sun, H.C., Zheng, L.B., Guo, J.B., and Zhang, X.L., In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: therapeutic effect on liver fibrosis/cirrhosis, World J. Gastroenterol., 2017, vol. 23, p. 8152. https://doi.org/10.3748/wjg.v23.i46.8152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, Q.Y., Dong, F., and Ema, H., Research advance on in vitro generation of human hematopoietic stem cells for transplantation—review, Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2020, vol. 28, p. 320.  https://doi.org/10.19746/j.cnki.issn.1009-2137.2020.01.053

    Article  PubMed  Google Scholar 

  144. Zhao, L., Cheng, G., Choksi, K., Samanta, A., Girgis, M., Soder, R., Vincent, R.J., Wulser, M., De Ruyter, M., McEnulty, P., Hauptman, J., Yang, Y., Weiner, C.P., and Dawn, B., Transplantation of human umbilical cord blood-derived cellular fraction improves left ventricular function and remodeling after myocardial ischemia/reperfusion, Circ. Res., 2019, vol. 125, p. 759. https://doi.org/10.1161/CIRCRESAHA.119.315216

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 1 8-29-14015 mk), as well as the program of “State Support for Leading Scientific Schools of the Russian Federation” (SSc-2495.2020.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Litvinova.

Ethics declarations

The authors declare that they have no conflict of interest. The authors did not conduct experiments with animals or human beings.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: CB—cord blood, HSC–hematopoietic stem cell; MSC—mesenchymal stem cell, DM—diabetes mellitus, FBS—fetal bovine serum, hCB-MSC—mesenchymal stem cells derived from human CB, iPS cells—induced pluripotent stem cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, A.G., Yurova, K.A., Shupletsova, V.V. et al. Characteristics of Umbilical-Cord Blood and Its Use in Clinical Practice. Cell Tiss. Biol. 16, 15–31 (2022). https://doi.org/10.1134/S1990519X22010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X22010047

Keywords:

Navigation