Skip to main content
Log in

GABAergic Axosomatic Synapses of Rat Brain Cortex

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the organization of GABAergic axosomatic synaptic terminals in the parietal, cingular and piriform cortical areas of the rat brain. The methodological approach of the study was an immunohistochemical staining for glutamate decarboxylase – the GABA-synthetic enzyme. Samples were analyzed using confocal laser microscopy. Brain of adult male Wistar rats (n = 11) were studied. As a result of the work, information of the morphological organization of pre-synaptic terminals from distinct cortical areas was obtained. It has been found that sizes of GABAergic synapses and their distribution densities onto a pyramidal soma in distinct cortical regions are significantly different (P < 0.05). It has been shown that confocal laser microscopy can provide objective information for investigating synapse structure. The obtained results allow a more complete assessment of inhibitory structures of the brain and their interaction with glutamatergic pyramidal neurons. The methodological approach used in the study can help to identify morphological signs of GABAergic system dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Benes, F.M., Todtenkopf, M.S., Logiotatos, P., and Williams, M., Glutamate decarboxylase65-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain, J. Chem. Neuroanat., 2000, vol. 20, p. 259. https://doi.org/10.1016/S0891-0618(00)00105-8

    Article  CAS  PubMed  Google Scholar 

  2. Etkin, A., Egne, T., and Kalisch, R., Emotional processing in anterior cingulate and medial prefrontal cortex, Trends Cogn. Sci., 2011, vol. 15, no. 2, p. 85. https://doi.org/10.1016/j.tics.2010.11.004

    Article  PubMed  Google Scholar 

  3. Fabri, M. and Manzoni, T., Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex, Neuroscience, 1996, vol. 72, p. 435. https://doi.org/10.1016/0306-4522(95)00568-4

    Article  CAS  PubMed  Google Scholar 

  4. Feofanov, A.V., Spectral confocal laser scanning microscopy in biological research, Usp. Biol. Khim., 2007, vol. 47, p. 371.

    CAS  Google Scholar 

  5. Gavrilovici, C., Pollock, E., Everest, M., and Poulter, M.O., The loss of interneuron functional diversity in the piriform cortex after induction of experimental epilepsy, Neurobiol. Dis., 2012, vol. 48, p. 317. https://doi.org/10.1016/j.nbd.2012.07.002

    Article  PubMed  Google Scholar 

  6. Glausier, J.R., Roberts, R.C., and Lewis, D.A., Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex, J. Comp. Neurol., 2017, vol. 525, p. 1.

    Article  Google Scholar 

  7. Greif, K.F., Erlander, M.G., Tillakaratne, N.J., and Tobin, A.J., Postnatal expression of glutamate decarboxylases in developing rat cerebellum, Neurochem. Res., 1991, vol. 16, p. 235. https://doi.org/10.1007/BF00966086

    Article  CAS  PubMed  Google Scholar 

  8. Grigoriev, I.P., Alekseeva, O.S., Kirik, O.V., Sufiyeva, D.A., and Korzhevskii, D.E., Distribution of neurofilament light chain proteins in rat brain cingulate cortex, Morphologiia, 2018, vol. 154, no. 5, p. 7.

    Google Scholar 

  9. Holderith, N., Lorincz, A., Katona, G., Rózsa, B., Ku-li, A., Watanabe, M., and Nusser, Z., Release probability of hippocampal glutamatergic terminals scales with the size of the active zone, Nat. Neurosci., 2012, vol. 15, p. 988. https://doi.org/10.1038/nn.3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hull, C., Isaacson, J.S., and Scanziani, M., Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs, J. Neurosci., 2009, vol. 29, p. 9127. https://doi.org/10.1523/JNEUROSCI.5971-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kepecs, A. and Fishell, G., Interneuron cell types are fit to function, Nature, 2014, vol. 505, p. 318. https://doi.org/10.1038/nature12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirichenko, E.Yu., Logvinov, A.K., and Filippova, S.Yu., Neuronal gap junctions in functional cortical columns and ventral thalamic nuclei, Cell Tissue Biol., 2018, vol. 12, p. 74.

    Article  Google Scholar 

  13. Klingler, E., Development and organization of the evolutionarily conserved three-layered olfactory cortex, eNeuro, 2017, vol. 4. https://doi.org/10.1523/ENEURO.0193-16.2016

  14. Korzhevskii, D.E., Grigorev, I.P., Novikova, A.D., Kovalchuk, V.A., and Kirik, O.V., Cholinergic structures of the cingulate cortex of the rat brain, Med. Akad. Zh., 2013, vol. 13, no. 4, p. 49.

    Google Scholar 

  15. Kozlovskii, S.A., Velichkovskii, B.B., Vartanov, A.V., Nikonova, E.Yu., and Velichkovskii, B.M., The role of the domains of the anterior cingulate cortex in the functioning of human memory, Exp. Psychol., 2012, vol. 5, no. 1, p. 12.

    Google Scholar 

  16. Kuljis, D.A., Park, E., Telmer, C.A., Lee, J., Acker-man, D.S., Bruchez, M.P., and Barth, A.L., Fluorescence-based quantitative synapse analysis for cell type-specific connectomics, ENeuro., 2019, vol. 6. https://doi.org/10.1523/ENEURO.0193-19.2019

  17. Lee, S.H., Hjerling-Leffler, J., Zagha, E., Fishell, G., and Rudy, B., The largest group of superficial neocortical GA-BAergic interneurons expresses ionotropic serotonin receptors, J. Neurosci., 2010, vol. 30, p. 16796. https://doi.org/10.1523/JNEUROSCI.1869-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim, L., Mi, D., Llorca, A., and Marín, O., Development and functional diversification of cortical interneurons, Neuron, 2018, vol. 100, p. 294. https://doi.org/10.1016/j.neuron.2018.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luzzati, F., A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program, Front. Neurosci., 2015, vol. 9.

  20. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C., Interneurons of the neocortical inhibitory system, Nat. Rev. Neurosci., 2004, vol. 5., p. 793. https://doi.org/10.1038/nrn1519

    Article  CAS  PubMed  Google Scholar 

  21. Peters, A., Sethares, C., and Harriman, K.M., Different kinds of axon terminals forming symmetric synapses with the cell bodies and initial axon segments of layer II/III pyramidal cells, II. Synaptic junctions, J. Neurocytol., 1990, vol. 19, p. 584. https://doi.org/10.1007/BF01257246

    Article  CAS  PubMed  Google Scholar 

  22. Pollock, E., Everest, M., Brown, A., and Poulter, M.O., Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis, Neurobiol. Dis., vol. 70, p. 21. https://doi.org/10.1016/j.nbd.2014.06.003

  23. Prévot, T. and Sibille, E., Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders, Mol. Psychiatry, 2020. https://doi.org/10.1038/s41380-020-0727-3

  24. Roberts, R.C., Barksdale, K.A., Roche, J.K., and Lahti, A.C., Decreased synaptic and mitochondrial density in the postmortem anterior cingulate cortex in schizophrenia, Schizophrenia Res., 2015, vol. 168, p. 543. https://doi.org/10.1016/j.schres.2015.07.016

    Article  CAS  Google Scholar 

  25. Robinson, J.L., Molina-Porcel, L., Corrada, M.M., Raible, K., Lee, E.B., Lee, V.M.Y., Kawas, C.H., and Trojanowski, J.Q., Perforant path synaptic loss correlates with cognitive impairment and Alzheimer’s disease in the old-est-old, Brain, 2014, vol. 137, p. 2578. https://doi.org/10.1093/brain/awu190

    Article  PubMed  Google Scholar 

  26. Rudy, B., Fishell, G., Lee, S.H., and Hjerling-Leffler, J., Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons, Dev. Neurobiol., vol. 71, p. 45.

  27. Scheff, S.W. and Price, D.A., Alzheimer’s disease-related synapse loss in the cingulate cortex, J. Alzheimer’s Dis., 2001, vol. 3, p. 495. https://doi.org/10.3233/JAD-2001-3509

    Article  Google Scholar 

  28. Shtein, G.I., Rukovodstvo po konfokal’noi mikroskopii (Manual on Confocal Microscopy), St. Petersburg: Inst. Tsitol. Ross. Akad. Nauk, 2007.

  29. Südhof, T.C., Synaptic neurexin complexes: a molecular code for the logic of neural circuits, Cell, 2017, vol. 171, p. 745. https://doi.org/10.1016/j.cell.2017.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki, N. and Bekkers, J.M., Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers, J. Comp. Neurol., 2010, vol. 518, p. 1670. https://doi.org/10.1002/cne.22295

    Article  CAS  PubMed  Google Scholar 

  31. Svishchev, G.M., Konfokal’naya mikroskopiya i ul’tramikroskopiya zhivoi kletki (Confocal Microscopy and Ultramicroscopy of a Living Cell), Moscow: Fizmatlit, 2011.

  32. von Krosigk, M., Smith, Y., Bolam, J.P., and Smith, A.D., Synaptic organization of gabaergic inputs from the striatum and the globus pallidus onto neurons in the substantia nigra and retrorubral field which project to the medullary reticular formation, Neuroscience, 1992, vol. 50, p. 531. https://doi.org/10.1016/0306-4522(92)90445-8

    Article  CAS  PubMed  Google Scholar 

  33. Young, J.C., Vaughan, D.N., Paolini, A.G., and Jackson, G.D., Electrical stimulation of the piriform cortex for the treatment of epilepsy: a review of the supporting ev-idence, Epilepsy Behav., 2018, vol. 88, p. 152. https://doi.org/10.1016/j.yebeh.2018.09.004

    Article  PubMed  Google Scholar 

  34. Young, J.C., Vaughan, D.N., Nasser, H.M., and Jackson, G.D., Anatomical imaging of the piriform cortex in epilepsy, Exp. Neurol., 2019, vol. 320. https://doi.org/10.1016/j.expneurol.2019.113013

  35. Zaitsev, A.V., Classification and functions of GABAergic interneurons of the mammalian new cortex, Biochemistry (Moscow) Suppl., Ser. A: Membr. Cell Biol., 2013, vol. 7, no. 4, p. 253.

    Google Scholar 

  36. Zhang, Q., Lee, W.C.A., Paul, D.L., and Ginty, D.D., Multiplexed peroxidase-based electron microscopy labeling enables simultaneous visualization of multiple cell types, Nat. Neurosci., 2019, vol. 22, p. 828. https://doi.org/10.1038/s41593-019-0358-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out as part of a state order to the Institute of Experimental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Razenkova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This work was performed in accordance with ethical standards. Research was approved by the Local Ethics Committee of the Institute of Experimental Medicine (extract from protocol no. 1/20 of February 27, 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razenkova, V.A., Korzhevskii, D.E. GABAergic Axosomatic Synapses of Rat Brain Cortex. Cell Tiss. Biol. 15, 267–272 (2021). https://doi.org/10.1134/S1990519X21030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21030093

Keywords:

Navigation