Skip to main content
Log in

Induced Stress on Red Blood Cell Promotes Red Blood Cell-Endothelial Adhesion

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Besides disease condition, very few stress stimulants were determined to provoke red blood cell (RBC) adhesion to endothelial cells (EC). However, the possible role of other stress factors which disrupt RBCs anti-adhesive property is still unknown. To resolve this, we studied in vitro static adherence of RBC-EC after RBC exposure to physical (osmotic and shear stress) and chemical stress stimulants (cholesterol depletion and nitric oxide modulation). In support with earlier studies, RBC under hypertonic shock demonstrated a significant increase in RBC-EC adherence as a result of prominent structural modification. Besides, our study shows that shear stress, cholesterol depletion and nitric oxide inhibition in RBC increases RBC-EC adhesiveness which elucidates cholesterol, nitric oxide and shear stress importance in preventing RBC-EC adhesion. Thus, present study shows that assessment of RBC-EC interaction after exerting to external stress is critical in understanding pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Anniss, A.M. and Sparrow, R.L., Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions, Transfusion, 2006, vol. 46, pp.1561–1567.

    Article  CAS  PubMed  Google Scholar 

  2. Andrews, D.A., and Low, P.S., Role of red blood cells in thrombosis, Curr. Opin. Hematol., 1999, vol.6, pp. 76–82.

    Article  CAS  PubMed  Google Scholar 

  3. Barr, J.D., Chauhan, A.K., Schaeffer, G.V., Hansen, J.K., and Motto, D.G., Red blood cells mediate the onset of thrombosis in the ferric chloride murine model, Blood, 2013, vol.121, pp. 3733–3741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barshtein, G., Arbell, D., and Yedgar S., Hemodynamic functionality of transfused red blood cells in the microcirculation of blood recipients, Front. Physiol., 2018, vol.9, no. 41. https://doi.org/10.3389/fphys.2018.00041

  5. Bonomini, M., Sirolli, V., Gizzi, F., Di Stante, S., Grilli, A., and Felaco M., Enhanced adherence of human uremic erythrocytes to vascular endothelium: role of phosphatidylserine exposure, Kidney Int., 2002, vol. 62, pp.1358–1363.

    Article  CAS  PubMed  Google Scholar 

  6. Bor-Kucukatay, M., Wenby, R.B., Meiselman, H.J., and Baskurt OK., Effects of nitric oxide on red blood cell deformability, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, H1577–1584.

    Article  CAS  PubMed  Google Scholar 

  7. Brocker, C., Thompson, D.C., and Vasiliou, V., The role of hyperosmotic stress in inflammation an disease, Biomol. Concepts, 2012, vol. 3, pp. 345–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carden, M.A., Fay, M.E., Lu, X., Mannino, R.G., Sakurai, Y., Ciciliano, J.C., Hansen, C.E., Chonat, S., Joiner, C.H., Wood, D.K., and Lam, W.A., Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion, Blood, 2017, vol. 130, pp. 2654–2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chabanel, A., Flamm, M., Sung, K.L., Lee, M.M., Schachter, D., and Chien, S., Influence of cholesterol content on red cell membrane viscoelasticity and fluidity, Biophys. J., 1983, vol. 44, pp. 171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chappey, O., Wautier-Pepin, M.P., and Wautier, J.L., Adhesion of erythrocytes to endothelium in pathological situations: a review article, Nouv. Rev. Franc. Hematol., 1994, vol. 36, pp. 281–288.

    CAS  Google Scholar 

  11. Colin, Y., Le Van Kim, C., and El Nemer, W., Red cell adhesion in human diseases, Curr. Opin. Hematol., 2014, vol.21, pp. 186–192.

    Article  PubMed  Google Scholar 

  12. Edgell, C.J., McDonald, C.C. and Graham, J.B., Permanent cell line expressing human factor VIII-related antigen established by hybridization, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, pp. 3734– 3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edgell, C-J. S., Haizlip, J., Bagnell, C.R., Packenham, J.P., Harrison, P., Wilbourn, B., and Madden V. J., Endothelium specific Weibel–Palade bodies in a continuous human cell line, EA.hy926, In Vitro Cell Dev. Biol., 1990, vol. 26, pp. 1167–1172.

    Article  CAS  PubMed  Google Scholar 

  14. Emeis J.J. and Edgell C.J., Fibrinolytic properties of a human endothelial hybrid cell line (Ea.hy 926), Blood, vol. 71, pp. 1669–1675.

  15. Fens, M.H., Larkin, S.K., Oronsky, B., Scicinski, J., Morris, C.R., and Kuypers, F.A., The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions, PLoS One, 2014, vol. 9, e101626. https://doi.org/10.1371/journal.pone.0101626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forsyth, A.M., Braunmüller, S., Wan, J., Franke, T., and Stone, H.A., The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release, Microvasc. Res., 2012, vol. 83, pp. 347–351.

    Article  CAS  PubMed  Google Scholar 

  17. Grossin, N., Wautier, M.P., and Wautier, J.L., Red blood cell adhesion in diabetes mellitus is mediated by advanced glycation end product receptor and is modulated by nitric oxide, Biorheology, 2009, vol. 46, pp. 63–72.

    Article  CAS  PubMed  Google Scholar 

  18. Hillery, C.A., Du, M.C., Montgomery, R.R., and Scott, J.P., Increased adhesion of erythrocytes to components of the extracellular matrix: isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin, Blood, 1996, vol. 87, pp. 4879–4886.

    Article  CAS  PubMed  Google Scholar 

  19. Horobin, J.T., Sabapathy, S., and Simmonds M.J., Repetitive supra-physiological shear stress impairs red blood cell deformability and induces hemolysis, Artif. Organs, 2017, vol. 41, pp. 1017–1025.

    Article  PubMed  Google Scholar 

  20. Hossain, M., Qadri, S.M., and Liu, L., Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature, J. Inflamm., 2012, vol. 9, no. 28. https://doi.org/10.1186/1476-9255-9-28

  21. Hovav, T., Goldfarb, A., Artmann, G., Yedgar, S., and Barshtein, G., Enhanced adherence of beta-thalassaemic erythrocytes to endothelial cells, Br. J. Haematol., 1999, vol. 106, pp. 178–181.

    Article  CAS  PubMed  Google Scholar 

  22. Frangos, J.A., Eskin, S.G., McIntire, L.V., and Ives, C.L., Flow effects on prostacyclin production by cultured human endothelial cells, Science, 1985, vol. 227, pp. 1477– 1479.

    Article  CAS  PubMed  Google Scholar 

  23. Jambou, R., Combes, V., Jambou, M.J., Weksler, B.B., Couraud, P.O., and Grau, G.E., Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions, PLoS Pathog., 2010, vol. 6, e1001021. https://doi.org/10.1371/journal.ppat.100102

    Article  PubMed  PubMed Central  Google Scholar 

  24. Janz, D.R., and Ware, L.B., The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS, J. Intensive Care, 2015, vol. 3, no. 20. https://dx.doi.org/10.1186%2Fs40560-015-0086-3

  25. Kaul, D.K., Koshkaryev, A., Artmann, G., Barshtein, G., and Yedgar, S., Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance, Am. J. Physiol. Heart Circ. Physiol., 2008, vol. 295, H1788–1793.

    Article  CAS  PubMed  Google Scholar 

  26. Kucukal, E., Little, J.A., and Gurkan, U.A., Shear dependent red blood cell adhesion in microscale flow, Integr. Biol. (Camb.), 2018, vol. 10, pp. 194–206.

    Article  CAS  Google Scholar 

  27. Kuhn, V., Diederich, L., Keller, T.C.S. 4th, Kramer C.M., Lückstädt W., Panknin, C., Suvorava, T., Isakson, B.E., Kelm, M., and Cortese-Krott, M.M., Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia, Antioxid. Redox Signal., 2017, vol. 26, pp. 718–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, C., Li, Z., Xun, S., Jiang, P., Yan, R., Chen, M., Hu, F., Rupp, R.A., Zhang, X., Pan, L., and Xu J., Protection of the biconcave profile of human erythrocytes against osmotic damage by ultraviolet-A irradiation through membrane-cytoskeleton enhancement, Cell Death Discov., 2017, vol. 3, no. 17040. https://dx.doi.org/10.1038%2Fcddiscovery.2017.40

  29. Ly, J., Marticorena, R., and Donnelly, S., Red blood cell survival in chronic renal failure, Am. J. Kidney Dis., 2004, vol. 44, pp. 715–719.

    Article  PubMed  Google Scholar 

  30. Manodori, A.B., Barabino, G.A., Lubin, B.H., and Kuypers, F.A., Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin, Blood, 2000, vol. 95, 1293–1300.

    Article  CAS  PubMed  Google Scholar 

  31. Meram, E., Yilmaz, B.D., Bas, C., Atac, N., Yalcin, O., Meiselman, H.J., and Baskurt, O.K., Shear stress-induced improvement of red blood cell deformability, Biorheology, 2013, vol. 50, pp. 165– 176.

    Article  PubMed  Google Scholar 

  32. Muhsin, S.A. and Mount, D.B., Diagnosis and treatment of hypernatremia, Best Pract. Res. Clin. Endocrinol. Metab., 2016, vol. 30, pp.189–203.

    Article  CAS  PubMed  Google Scholar 

  33. Nagarajan, S., Raj, R.K., Saravanakumar, V., Balaguru, U.M., Behera, J., Rajendran, V.K., Shathya, Y., Ali, B.M., Sumantran, V., and Chatterjee S., Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells, Sci. Rep., 2016, vol. 6, no. 26935. https://doi.org/10.1038/srep26935

  34. Namazi, G., Pourfarzam, M., Jamshidi, Rad S., Movahedian-Attar, A., Sarrafzadegan, N., Sadeghi M., and Asa P., Association of the total cholesterol content of erythrocyte membranes with the severity of disease in stable coronary artery disease, Cholesterol, vol. 2014, no. 2014, p. 821686. https://doi.org/10.1155/2014/821686

  35. Nicolay, J.P., Thorn, V., Daniel, C., Amann, K., Siraskar, B., Lang, F., Hillgruber, C., Goerge. T., Hoffmann, S., Gorzelanny, C., and Huck, V., Cellular stress induces erythrocyte assembly on intravascular von Willebrand factor strings and promotes microangiopathy, Sci. Rep., 2018, vol. 8, no. 10945. https://doi.org/10.1038/s41598-018-28961-2

  36. Ramot, Y., Koshkaryev, A., Goldfarb, A., Yedgar, S., Barshtein, G., Phenylhydrazine as a partial model for β-thalassaemia red blood cell hemodynamic properties, Br. J. Haematol., 2008, vol. 140, pp. 692–700.

    Article  CAS  PubMed  Google Scholar 

  37. Relevy, H., Koshkaryev, A., Manny. N., Yedgar, S., Barshtein, G., Blood banking–induced alteration of red blood cell flow properties, Transfusion, 2008, vol. 48, pp. 36–46.

    Google Scholar 

  38. Saijonmaa, O., Nyman, T., Hohenthal, U. and Fyhrquist, F., Endothelin-1 is expressed and released by a human endothelial hybrid cell line (EA.hy 926), Biochem. Biophys. Res. Commun., 1991, vol. 181, pp. 529–536.

    Article  CAS  PubMed  Google Scholar 

  39. Schlager, A., Zamir, G., Barshtein, G., Yedgar, S., and Arbell, D., Plasma factor in red blood cells adhesion to endothelial cells: humans and rats, Cell Biochem. Biophys., 2010, vol. 58, pp. 157–161.

    Article  CAS  PubMed  Google Scholar 

  40. Shiu, Y.T. and McIntire, L.V., In vitro studies of erythrocyte–vascular endothelium interactions. Ann. Biomed. Eng., 2003, vol. 31, pp. 1299–1313.

    Article  PubMed  Google Scholar 

  41. Smeets, M.W., Bierings, R., Meems, H., Mul, F.P., Geerts, D., Vlaar, A.P., Voorberg, J., and Hordijk, P.L., Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor, PloS One, 2017, vol.12, e0173077. https://doi.org/10.1371/journal.pone.0173077. eCollection 2017.

  42. Space, S.L., Lane, P.A., Pickett, C.K., and Weil, J.V., Nitric oxide attenuates normal and sickle red blood cell adherence to pulmonary endothelium, Am. J. Hematol., 2000, vol. 63, pp. 200–204.

    Article  CAS  PubMed  Google Scholar 

  43. Suggs, J.E., Madden, M.C., Friedman, M., and Edgell, C.J., Prostacyclin expression by a continuous human cell line derived from vascular endothelium, Blood, 1986, vol. 68, pp. 825–929.

    Article  CAS  PubMed  Google Scholar 

  44. Temiz Artmann, A., Akhisaroglu, M., Sercan, Z., Resmi, H., Kayatekin, B.M., Yorukoglu, K., and Kirkali, G., Adhesion of erythrocytes to endothelial cells after acute exercise: differences in red blood cells from juvenile and adult rats, Physiol. Res., 2006, vol. 55, pp. 381–388.

    CAS  PubMed  Google Scholar 

  45. Thornhill, M.H., Li, J. and Haskard, D.O., Leucocyte endothelial cell adhesion: a study comparing human umbilical vein endothelial cells and the endothelial cell line EA-hy-926, Scand. J. Immunol., 1993, vol. 38, pp. 279–286.

    Article  CAS  PubMed  Google Scholar 

  46. Van Oost, B.A., Edgell, C.J., Hay, C.W., and MacGillivray, R.T., Isolation of a human von Willebrand factor cDNA from the hybrid endothelial cell line, Biochem. Cell Biol., 1986, vol. 64, pp. 699–705.

    Article  CAS  PubMed  Google Scholar 

  47. Villa, C.H., Muzykantov, V.R., and Cines DB., The emerging role for red blood cells in haemostasis: opportunity for intervention, ISBT Sci. Ser., 2016, vol. 11, pp. 158–164.

    Article  CAS  Google Scholar 

  48. Wandersee, N.J., Punzalan, R.C., Rettig, M.P., Kennedy, M.D., Pajewski. N.M., Sabina. R.L., Paul Scott, J., Low, P.S., and Hillery CA., Erythrocyte adhesion is modified by alterations in cellular tonicity and volume, Br. J. Haematol., 2005, vol. 131, pp. 366–77.

    Article  CAS  PubMed  Google Scholar 

  49. Watanabe, N., Arakawa, Y., Sou, A., Kataoka, H., Ohuchi, K., Fujimoto, T., and Takatani, S., Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator, Physiol. Meas., 2007, vol. 28, pp. 531–545.

    Article  PubMed  Google Scholar 

  50. Wautier, J.L., and Wautier, M.P., Molecular basis of erythrocyte adhesion to endothelial cells in diseases. Clin. Hemorheol. Micro., 2013, vol. 53, pp. 11–21.

    Google Scholar 

  51. Yang, Y., Koo, S., Lin, C.S., and Neu, B., Macromolecular depletion modulates the binding of red blood cells to activated endothelial cells, Biointerphases, 2010a, vol. 5, FA19-FA23. https://doi.org/10.1116/1.3460343

    Article  PubMed  Google Scholar 

  52. Yang, Y., Koo, S., Lin, C.S., and Neu, B., Specific binding of red blood cells to endothelial cells is regulated by nonadsorbing macromolecules, J. Biol. Chem., 2010b, vol. 285, pp. 40489–40495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yedgar, S., Koshkaryev, A., and Barshtein, G., The red blood cell in vascular occlusion. Pathophysiol. Haemost. Thromb., 2002, vol. 32, pp. 263–268

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Centre for Nanoscience and technology, Anna University, Chennai, Tamil Nadu, India for the instrumental facility.

Funding

This work was supported by a grant from Centre for research, Anna University, India to MV; from the University Grant Commission-Faculty Research Program (UGC-FRP), Government of India to SC; from Department of Science and Technology, Science and Engineering Research Board (SERB), India to NS (Grant no. PDF/2017/000849).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvro Chatterjee.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study protocol was approved by Institutional Biosafety and Ethical Committee of AU-KBC Research Centre, Chennai, India (Annexure I: Project number III dated July 19, 2016).

AUTHOR’S CONTRIBUTION

MV prepared the manuscript, designed, performed the experiments and analyzed the data; SC supervised, designed the experiments and approved the manuscript. PS helped in performing the experiments. SVN and NS contributed to the discussion and reviewed the manuscript. All authors reviewed the manuscript.

Additional information

Abbreviations: DMEM—Dulbecco modified Eagle medium, PBS—phosphate buffer saline, FBS—fetal bovine serum, L‑NAME—N-omega-nitro-L-arginine methyl ester, L-ARG—L-arginine, NaCl—sodium chloride, MβCD- Methylbetacyclodextrin, SFM—serum free medium (DMEM without FBS), SEM—scanning electron microscope.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi Vijayaraghavan, Sengupta, P., Sumantran, V.N. et al. Induced Stress on Red Blood Cell Promotes Red Blood Cell-Endothelial Adhesion. Cell Tiss. Biol. 14, 448–457 (2020). https://doi.org/10.1134/S1990519X20060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20060085

Keywords:

Navigation