Skip to main content
Log in

Gap Junctions in the Composition of Neurogliovascular Ensembles in Rat Cortical Barrel Columns

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Complex morphological study of gap junctions (GJs) in the blood–brain barrier in the rat cortical barrel columns using light and transmission electron microscopy and immunohistochemistry showed that astrocytes united by GJs in a single network can act as the main mediator between neurons and the vascular bed, forming a complex of neurogliovascular ensembles. The possibility of using such complexes to determine the functional organization of cortical columns is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ambrosi, C., Ren, C., Spagnol, G., Cavin, G., Cone, A., Grintsevich, E.E., Sosinsky, G.E., and Sorgen, P.L., Connexin 43 forms supramolecular complexes through non-overlapping binding sites for drebrin, tubulin, and ZO-1, PLoS One, 2016, vol. 11. e0157073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernardinelli, Y., Magistretti, P.J., and Chatton, J.Y., Astrocytes generate Na+-mediated metabolic waves, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 14937–14942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blinder, P., Tsai, P.S., Kaufhold, J.P., Knutsen, P.M., Suhl, H., and Kleinfeld, D., The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow, Nat. Neurosci., 2013, vol. 16, pp. 889–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bozzola, J.J. and Russel, L.D., Electron Microscopy: Principles and Techniques for Biologists, Boston: Jones and Bastlett Publishers, 1992.

    Google Scholar 

  5. Chernorizov, A.M., Glia: morphology, physiology and functions, in Fundamental’noe rukovodstvo. Neiron. Obrabotka signalov, plastichnost’, modelirovanie (Fundamental Handbook. Neuron: Signal Processing, Plasticity, and Modeling), Tumen: Kompaniya Mir Ltd., 2008, pp. 33–100.

  6. De Felipe, J., The evolution of the brain, the human nature of cortical circuits, and intellectual creativity, Front. Neuroanat., 2011, vol. 5, p. 29.

    Google Scholar 

  7. Eilam, R., Aharoni, R., Arnon, R., and Malach, R., Astrocyte morphology is confined by cortical functional boundaries in mammals ranging from mice to human, Elife, 2016, vol. 5. e15915.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Giaume, C., Koulakoff, A., Roux, L., Holcman, D., and Rouach, N., Astroglial networks: a step further in neuroglial and gliovascular interactions, Nat. Rev. Neurosci., 2010, vol. 11, pp. 87–99.

    Article  CAS  PubMed  Google Scholar 

  9. Gordon, G.R., Choi, H.B., Rungta, R.L., Ellis-Davies, G.C., and MacVicar, B.A., Brain metabolism dictates the polarity of astrocyte control over arterioles, Nature, 2008, vol. 456, pp. 745–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halassa, M.M., Fellin, T., Takano, H., Dong, J.H., and Haydon, P.G., Synaptic islands defined by the territory of a single astrocyte, J. Neurosci., 2007, vol. 27, pp. 6473–6477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamasawa, N., Sik, A., Morita, M., Yasumura, T., Davidson, K.G.V., Nagy, J.I., and Rash, J.E., Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt–Lanterman incisures: implications for ionic homeostasis and potassium siphoning, Neuroscience, 2005, vol. 136, pp. 65–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kettenmann, H. and Ransom, B.R., Neuroglia, Oxford: Oxford University Press, 2005.

    Google Scholar 

  13. Kirichenko, E.Y., Churyumova, G.A., and Logvinov, A.K., Ultrastructural study of glial gap junctions in the thalamic nuclei of rat, Biochemistry (Moscow) Suppl. Series A: Membrane Cell Biol., 2016, vol. 3, pp. 207–217.

    Google Scholar 

  14. Kogan, A.B., Elektrofiziologiya (Electrophysiology), Moscow: Vyschaya Shkola, 1969.

    Google Scholar 

  15. Kunze, A., Congreso, M.R., Hartmann, C., Wallraff-Beck, A., Hüttmann, K., Bedner, P., Requardt, R., Seifert, G., Redecker, C., Willecke, K., Hofmann, A., Pfeifer, A., Theis, M., and Steinhäuser, C., Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 11336–11341.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lutz, S.E., Zhao, Y., Gulinello, M., Lee, S.C., Raine, C.S., and Brosnan, C.F., Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation, J. Neurosci., 2009, vol. 29, pp. 7743–7752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mathiisen, T.M., Lehre, K.P., Danbolt, N.C., and Ottersen, O.P., The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction, Glia, 2010, vol. 58, pp. 1094–1103.

    Article  PubMed  Google Scholar 

  18. Meshulam, L., Galron, R., Kanner, S., De, Pittà, M., Bonifazi, P., Goldin, M., Frenkel, D., Ben-Jacob, E., and Barzilai, A., The role of the neuro-astro-vascular unit in the etiology of ataxia telangiectasia, Front. Pharmacol., 2012, vol. 3, p. 157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mountcastle, V.B., Perceptual Neuroscience. The Cerebral Cortex, Cambridge: Harvard University Press, 1998.

    Google Scholar 

  20. Mulligan, S.J. and MacVicar, B.A., Calcium transients in astrocyte endfeet cause cerebrovascular constrictions, Nature, 2004, vol. 431, pp. 195–199.

    Article  CAS  PubMed  Google Scholar 

  21. Nagy, J.I., Ionescu, A.V., Lynn, B.D., and Rash, J.E., Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice, Glia, 2003, vol. 44, pp. 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicholls, J.G., Martin, A.R., Fuchs, P.A., and Wallace, B.G., From Neuron to Brain, Sinauer Associates Inc., 1999.

    Google Scholar 

  23. Nuriya, M., Shinotsuka, T., and Yasui, M., Diffusion properties of molecules at the blood–brain interface: potential contributions of astrocyte endfeet to diffusion barrier functions, Cerebral Cortex, 2013, vol. 23, pp. 2118–2126.

    Article  PubMed  Google Scholar 

  24. Odermatt, B., Wellershaus, K., Wallraff, A., Seifert, G., Degen, G., Euwens, C., Fuss, B., Bussow, H., Schilling, K., Stenhauser, C., and Willecke, K., Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS, J. Neurosci., 2003, vol. 23, pp. 4549–4559.

    Article  CAS  PubMed  Google Scholar 

  25. Orthmann-Murphy, J.L., Freidin, M., Fischer, E., Scherer, S.S., and Abrams, C.K., Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins, J. Neurosci., 2007, vol. 27, pp. 13949–13957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pannasch, U., Vargová, L., Reingruber, J., Ezan, P., Holcman, D., Giaume, C., Syková, E., and Rouach, N., Astroglial networks scale synaptic activity and plasticity, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 8467–8472.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, San Diego: Acad. Press, 1998.

    Google Scholar 

  28. Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., and Giaume, C., Astroglial metabolic networks sustain hippocampal synaptic transmission, Science, 2008, vol. 322, pp. 1551–1555.

    Article  CAS  PubMed  Google Scholar 

  29. Roux, L., Benchenane, K., Rothstein, J.D., Bonvento, G., and Giaume, C., Plasticity of astroglial networks in olfactory glomeruli, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 18 442–18 446.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out with support from the program of governmental assignment of the Ministry of Education and Science of the Russian Federation no. 6.6047.2017/8.9 (basic part).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kirichenko.

Ethics declarations

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The accommodation of animals and experimental studies were carried out in accordance with the protocol approved by the Bioethics Commission of Southern Federal University in April 18, 2012.

Additional information

Translated by P. Kuchina

Abbreviations: BBB—blood–brain barrier, IHC—immunohistochemistry, NGVE—neurogliovascular ensemble, GJ—gap junction, EM–electron microscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirichenko, E.Y., Povilaytite, P.E., Logvinov, A.K. et al. Gap Junctions in the Composition of Neurogliovascular Ensembles in Rat Cortical Barrel Columns. Cell Tiss. Biol. 12, 477–483 (2018). https://doi.org/10.1134/S1990519X18060044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18060044

Keywords:

Navigation