Skip to main content
Log in

Adhesion of Thymocytes to the Thymic Epithelial Cells and Participation of Neyropilin-1 and Plexin A1 in the Adhesion

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

Thymic epithelial cells play not only an important structural role, but also create the microenvironment necessary for the maturation and differentiation of thymocytes. One of the stages of maturation of thymocytes is their adhesion to the epithelial cells of the thymus, the mechanism of which has not been sufficiently studied. The goal of the study was investigation of the interaction of mouse thymocytes with cortical cTEC1-2 and the medullary mTEC3-10 thymic epithelial cell lines, namely, the dynamics of the adhesion, apoptosis, and population composition, as well as the expression of the neuropilin-1 (Nrp-1) and plexin A1 receptors (PlexA1) among adherent, nonadherent, and control cells cultured without epithelium. The maximal adhesion index was observed for a 30-min cocultivation; after this time, the index decreased. The main population of adherent cells consisted from immature CD4+CD8+ lymphocytes, and the relative content of mature CD4+ and CD8+ thymocytes was lower than in the control. We have shown for the first time that, even at short cocultivation periods (30 and 120 min), an increase in the content of thymocytes at the early apoptosis phase was observed among the population of adherent cells. For the first time, data have been obtained demonstrating the participation of Nrp-1 and PlexA1 in the process of thymocyte adhesion to mouse thymic epithelial cells as independent molecules in the absence of their semaphorin 3A ligand. It was shown that the expression of Nrp-1 on the surface of adherent thymocytes was significantly reduced during the adhesion process compared to the control, and the expression of PlexA1 increased. Preincubation of thymocytes with antibodies to Nrp-1 increased their adhesion to epithelial cells. The data obtained contribute to a better understanding of intercellular relationships in the thymus gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chaudhary, B., Khaled, Y.S., and Ammori, B.J., Neuropilin-1: function and therapeutic potential in cancer, Cancer Immunol. Immunother., 2014, vol. 63, pp. 81–99.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, L., Miao, W., Zhang, H., Zeng, F., Cao, C., Qiu, R., Yang, J., Luo, F., Yan, J., Lv, H., and Xu, Q., The inhibi-tory effects of a monoclonal antibody targeting neuropilin-1 on adhesion of glioma cells to fibronectin, J. Biomed. Nanotechnol., 2014, vol. 10, pp. 3373–3380.

    Article  PubMed  CAS  Google Scholar 

  3. Colic, M., Vucevic, D., Miyasaka, M., Tamatani, T., Pavlovic, M.D., and Dujic, A., Adhesion molecules involved in the binding and subsequent engulfment of thymocytes by a rat thymic epithelial cell line, Immunology, 1994, vol. 83, pp. 449–456.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Colic, M., Vucevic, D., Popovic, P., and Dujic, A., Bidirectional interactions between thymocytes and thymic epithelial cell lines in vitro, Dev. Immunol., 1998, vol. 6, pp. 71–79.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Corbel, C., Lemarchandel, V., Thomas-Vaslin, V., Pelus, A.-S., Agboton, C., and Romeo, P.-H., Neuropilin 1 and CD25 co-regulation during early murine thymic differentiation, Dev. Comp. Immunol., 2007, vol. 31, pp. 1082–1094.

    Article  PubMed  CAS  Google Scholar 

  6. Fujisawa, H., Ohta, K., Kameyama, T., and Murakami, Y., Function of a cell adhesion molecule, plexin, in neuron network formation, Dev. Neurosci., 1997, vol. 19, pp. 101–105.

    Article  PubMed  CAS  Google Scholar 

  7. Guy, R., Gafanovich, I., Rosenheimer, N., Oron, E., Yefenof, E., and Zilberman, Y., MHC non-restricted, CD95-independent apoptosis of immature thymocytes induced by thymic epithelial cells, Cell. Death Differ., 1996, vol. 3, pp. 431–438.

    PubMed  CAS  Google Scholar 

  8. He, H.-T., Naquet, P., Caillol, D., and Pierres, M., Thy-1 supports adhesion of mouse thymocytes to thymic epithelial cells through a Ca2+-independent mechanism, J. Exp. Med., 1991, vol. 173, pp. 515–518.

    Article  PubMed  CAS  Google Scholar 

  9. Kasai, M., Hirokawa, K., Kejino, K., Ogasawara, K., Tatsumi, M., Hermel, E., Monaco, J.J., and Mizuochi, T., Difference in antigen presentation pathways between cortical and medullary thymic epithelial cells, Eur. J. Immunol., 1996, vol. 26, pp. 2101–2107.

    Article  PubMed  CAS  Google Scholar 

  10. Klein, L., Dead man walking: how thymocytes scan the medulla, Nat. Immunol., 2009, vol. 10, pp. 809–811.

    Article  PubMed  CAS  Google Scholar 

  11. Klein, L., Kyewski, B., Allen, P.M., and Hogquist, K.A., Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see), Nat. Rev. Immunol., 2014, vol. 14, pp. 377–391.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Lepelletier, Y., Smaniotto, S., Hadj-Slimane, R., Villa-Verde, D.M., Nogueira, A.C., Dardenne, M., Hermi-ne, O., and Savino, W., Control of human thymocyte migration by neuropilin-1/semaphorin-3a-mediated interaction, Proc. Nat. Acad. Sci. U. S. A., 2007, vol. 104, pp. 5545–5550.

    Article  CAS  Google Scholar 

  13. Li, X., Parker, M., and Kooi, C.W.V., Control of cellular motility by neuropilin-mediated physical interactions, Biomol. Concepts, 2014, vol. 2, pp. 157–166.

    Google Scholar 

  14. Milpied, P., Renand, A., Bruneau, J., Mendes-Da-Cruz, D.A., Jacquelin, S., Asnafi, V., Rubio, M.-T., MacIntyre, E., Lepelletier, Y., and Hermine, J., Neuropilin-1 is not a marker of human Foxp3 Treg, Eur. J. Immunol., 2009, vol. 39, pp. 1466–1471.

    Article  PubMed  CAS  Google Scholar 

  15. Mukamoto, M., Okada, T., Kodama, H., and Baba, T., Effects of chiken thymic stromal cells on the growth and differentiation of thymocytes in vitro, Vet. Immunol. Immunopathol., 1999, vol. 68, pp. 25–37.

    Article  PubMed  CAS  Google Scholar 

  16. Nadeev, A.D., Kudryavtsev, I.V., Serebriakova, M.K., Avdonin, P.V., Zinchenko, V.P., and Goncharov, N.V., Dual proapoptotic and pronecrotic effect of hydrogen peroxide on human umbilical vein endothelial cells, Cell Tissue Biol., 2015, vol. 2, pp. 145–151.

    Google Scholar 

  17. Pezzi, N., Assis, A.F., Cotrim-Sousa, L.C., Lopes, G.S., Mosella, M.S., Lima, D.S., Bombonato-Prado, K.F., and Passos, G.A., Aire knockdown in medullary thymic epithelial cells affects aire protein, deregulates cell adhesion genes and decreases thymocyte interaction, Mol. Immunol., 2016, vol. 77, pp. 157–173.

    Article  PubMed  CAS  Google Scholar 

  18. Rinner, I., Eren, R., Skreiner, E., Kukulansky, T., Kasai, M., Hirokawa, K., Globerson, A., and Schauenstein, K., Thymocyte-directed enhancement of apoptosis via soluble factor(s) derived from a cortical and a medullary thymic epithelial cell line, Cell Tissue Res., 1996, vol. 284, pp. 327–330.

    Article  PubMed  CAS  Google Scholar 

  19. Rutto, K.V., Lyamina, I.V., Kudryavtsev, I.V., and Kiseleva, E.P., Regulation of vascular endothelial growth factor (VEGF) production in mouse thymic epithelial cell lines, Cell Tissue Biol., 2016, vol. 10, pp. 436–443.

    Article  Google Scholar 

  20. Sarris, M., Andersen, K.G., Randow, F., Mayr, L., and Betz1, A.G., Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition, Immunity, 2008, vol. 28, pp. 402–413.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Savino, W., Mendes-da-Cruz, D.A., Silva, J.S., Darden-ne, M., and Cotta-de-Almeida, V., Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines, Trends Immunol., 2002, vol. 23, pp. 305–313.

    Article  PubMed  CAS  Google Scholar 

  22. Schreiber, L., Sharabi, Y., Schwartz, D., Golfinger, N., Brodie, C., and Rotter, V., Induction of apoptosis and p53 expression in immature thymocytes by direct interaction with thymic epithelial cells, Scand. J. Immunol., 1996, vol. 44, pp. 314–322.

    Article  PubMed  CAS  Google Scholar 

  23. Sharova, N.I., Dzutsev, A., Litvina, M.M., Pleskovskaya, G.N., Kharchenko, T.Y., and Yarilin, A.A., Thymic epithelial cells induce Fas-independent activation apoptosis of thymocytes, Immunol. Lett., 2001, vol. 78, pp. 201–207.

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu, M., Murakami, Y., Suto, F., and Fujisawa, H., Determination of cell adhesion sites of neuropilin-1, J. Cell. Biol., 2000, vol. 148, pp. 1283–1293.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Singer, K.H., Interactions between epithelial cells and T lymphocytes: role of adhesion molecules, J. Leuk. Biol., 1990, vol. 48, pp. 367–374.

    Article  CAS  Google Scholar 

  26. Singer, K.H., Wolf, L.S., Lobach, D.F., Denning, S.M., Tuck, D.T., Robertson, A.L., and Haynes, B.F., Human thymocytes bind to autologous and allogeneic thymic epithelial cells in vitro, Immunology, 1986, vol. 83, pp. 6588–6592.

    CAS  Google Scholar 

  27. Stemberger, J., Witt, V., Printz, D., Geyeregger, R., and Fritsch, G., Novel single-platform multiparameter FCM analysis of apoptosis: significant differences between wash and no-wash procedure, Cytometry, 2010, vol. A 77, pp. 1075–1081.

  28. Takagi, S., Kasuya, Y., Shimizu, M., Matsuura, T., Tsuboi, M., Kawakami, A., and Fujisawa, H., Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system, Dev. Biol., 1995, vol. 170, pp. 207–222.

    Article  PubMed  CAS  Google Scholar 

  29. Takamatsu, H. and Kumanogoh, A., Diverse roles for semaphoring–plexin signaling in the immune system, Trends Immunol., 2012, vol. 33, pp. 127–135.

    Article  PubMed  CAS  Google Scholar 

  30. Tordjman, R., Lepelletier, Y., Lemarchandel, V., Cambot, M., Gaulard, P., Hermine, O., and Romeo, P.-H., A neuronal receptor, neuropillin-1, is essential for the initiation of the primary immune response, Nat. Immunol., 2002, vol. 3, pp. 477–482.

    Article  PubMed  CAS  Google Scholar 

  31. Valdembri, D., Caswell, P.T., Anderson, K.I., Schwarz, J.P., Konig, I., Astanina, E., Caccavari, F., Norman, J.C., Humphries, M.J., Bussolino, F., and Serini, G., Neuropilin-1/GIPC1 signaling regulates α5β1 integrin traffic and function in endothelial cells, PLoS Biol., 2009, vol. 7. e1000025.

    Article  CAS  PubMed Central  Google Scholar 

  32. Vucevic, D., Colic, M., Popovic, P., and Gasic, S., Different roles of a rat cortical thymic epithelial cell line in vitro on thymocytes and thymocyte hybridoma cells: phagocytosis, induction of apoptosis, nursing and growth promoting activities, Dev. Immunol., 2002, vol. 9, pp. 63–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yarilin, A.A., Sharova, N.I., and Dzutzev, A.K., Interaction between t lymphocytes and epithelial cells in thymus, Russ. J. Immunol., 1999, vol. 4, pp. 224–228.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project 15-04-06150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Rutto.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutto, K.V., Kudryavtsev, I.V. & Kisseleva, E.P. Adhesion of Thymocytes to the Thymic Epithelial Cells and Participation of Neyropilin-1 and Plexin A1 in the Adhesion. Cell Tiss. Biol. 12, 373–381 (2018). https://doi.org/10.1134/S1990519X18050073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18050073

Keywords:

Navigation