Skip to main content
Log in

Activation of Cardiac Stem Cells in Myocardial Infarction

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The development of heart failure caused by acute myocardial infarction is accompanied by massive necrotic death of cardiomyocytes in lesion areas and subsequent pathological myocardial remodeling. Traditionally, the possibility of heart reparation has been considered to be severely limited or absent in the postnatal period. Endogenous cardiac stem cells with a regenerative potential have recently been described, but the mechanisms of activation of these cells remain poorly understood. The aim of our work was to obtain cardiac stem cells from the ischemic area of the myocardium and compare their functional properties with stem cells isolated from the healthy area of the myocardium. RT-PCR was used to quantify the gene expression in cardiac stem cells. In addition, differentiated cells were stained for specific markers using immunocytochemical method. Cardiac stem cells originating from the infarction area had a higher proliferative potential and a greater propensity to migrate in comparison to the cells originated from a healthy myocardial area. The expression level of several specific markers of cardiogenic, osteogenic and adipogenic differentiation upon induction of corresponding differentiation was higher in the cells from the infarction area than in cells from the healthy myocardium. We conclude that myocardial ischemia activates the internal regenerative potential of cardiac stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin. HC, cells from healthy areas

PIC:

peri-infarct cells

PCR:

polymerase chain reaction

CSCs:

cardiac stem cells

References

  • Alimperti, S., You, H., George, T., Agarwal, S.K., and Andreadis, S.T., Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo, J. Cell Sci., 2014, vol. 127, pp. 2627–2638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anversa, P. and Kajstura, J., Ventricular myocytes are not terminally differentiated in the adult mammalian heart, Circ. Res., 1998, vol. 83, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Anversa, P., Sussman, M.A., and Bolli, R., Molecular genetic advances in cardiovascular medicine: focus on the myocyte, Circulation, 2004, vol. 109, pp. 2832–2838.

    Article  PubMed  Google Scholar 

  • Anversa, P., Kajstura, J., Rota, M., and Leri, A., Regenerating new heart with stem cells, J. Clin. Invest., 2013, vol. 123, pp. 62–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Augello, A. and De Bari, C., The regulation of differentiation in mesenchymal stem cells, Human Gene Therapy, 2010, vol. 21, pp. 1226–1238.

    Article  PubMed  CAS  Google Scholar 

  • Barile, L., Chimenti, I., Gaetani, R., Forte, E., Miraldi, F., Frati, G., Messina, E., and Giacomello, A., Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration, Nature Clinical Practice. Cardiovasc. Med., 2007a, vol. 4, pp. 9–14.

    Article  CAS  Google Scholar 

  • Barile, L., Messina, E., Giacomello, A., and Marbán, E., Endogenous cardiac stem cells, Progress Cardiovasc. Dis., 2007b, vol. 50, pp. 31–48.

    Article  CAS  Google Scholar 

  • Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., Yasuzawa-Amano, S., Trofimova, I., Siggins, R.W., LeCapitaine, N., Cascapera, S., Beltrami, A.P., D’Alessandro, D.A., Zias, E., Quaini, F., Urbanek, K., Michler, R.E., Bolli, R., Kajstura, J., Leri, A., and Anversa, P., Human cardiac stem cells, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 14068–14073.

    Article  PubMed  CAS  Google Scholar 

  • Bellio, M.A., Rodrigues, C.O., Landin, A.M., Hatzistergos, K.E., Kuznetsov, J., Florea, V., Valasaki, K., Khan, A., Hare, J.M., and Schulman, I.H., Physiological and hypoxic oxygen concentration differentially regulates human c-Kit(+) cardiac stem cell proliferation and migration, Am. J. Physiol. Heart Circ. Physiol., 2016, vol. 311, pp. H1509–H1519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellio, M.A., Pinto, M.T., Florea, V., Barrios, P.A., Taylor, C.N., Brown, A.B., Lamondin, C., Hare, J.M., Schulman, I.H., and Rodrigues, C.O., Hypoxic stress decreases c-myc protein stability in cardiac progenitor cells inducing quiescence and compromising their proliferative and vasculogenic potential, Sci. Rep., 2017, vol. 7, p. 9702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltrami, A.P., Urbanek, K., Kajstura, J., Yan, S.-M., Finato, N., Bussani, R., Nadal-Ginard, B., Silvestri, F., Leri, A., Beltrami, C.A., and Anversa, P., Evidence that human cardiac myocytes divide after myocardial infarction, New Eng. J. Med., 2001, vol. 344, pp. 1130–1135.

    Article  Google Scholar 

  • Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., and Anversa, P., Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, 2003, vol. 114, pp. 763–776.

    Article  PubMed  CAS  Google Scholar 

  • Buja, L.M., Myocardial ischemia and reperfusion injury, Cardiovasc. Pathol., 2005, vol. 14, pp. 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Chernoivanenko, I.S., Minin, An.A., and Minin, A.A., Role of vimentin in cell migration, Russ. J. Dev. Biol., 2013, vol. 44, no. 3, pp. 144–157.

    Article  CAS  Google Scholar 

  • Gambini, E., Pompilio, G., Biondi, A., Alamanni, F., Capogrossi, M.C., Agrifoglio, M., and Pesce, M., C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment, Cardiovasc. Res., 2011, vol. 89, pp. 362–373.

    Article  PubMed  CAS  Google Scholar 

  • Golpanian, S., Wolf, A., Hatzistergos, K.E., and Hare, J.M., Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue, Physiol. Rev., 2016, vol. 96, pp. 1127–68.

    Article  PubMed  CAS  Google Scholar 

  • Karpov, A.A., Ivkin, D.Yu., Dracheva, A.V., Pitukhina, N.N., Uspenskaya, Yu.K., Vaulina, D.D., Uskov, I.S., Eyvazova, Sh.D., Minasyan, S.M., Vlasov, T.D., Buryakina, A.V., and Galagudza, M.M., Rat model of post-infarct heart failure by left coronary artery occlusion: technical aspects, functional and morphological assessment, Biomeditsina, 2014, vol. 1, no. 3, pp. 32–48.

    Google Scholar 

  • Khudiakov, A.A., Kurapeev, D.I., Kostareva, A.A., and Malashicheva, A.B., Comparison of different methods for generation of functional human cardiomyocytes, Klet. Transplantol. Tkan. Inzh., 2013a, vol. 8, no. 2, pp. 46–54.

    Google Scholar 

  • Khudiakov, A.A., Kurapeev, D.I., Kostareva, A.A., and Malashicheva, A.B., Isolation of human cardiomyocyte progenitor cells from myocardial tissue, Byul. FTsSKE im. V.A. Almazova, 2013b, vol. 18, no. 1, pp. 17–20.

    Google Scholar 

  • Kimura, W., Xiao, F., Canseco, D.C., Muralidhar, S., Thet, S., Zhang, H.M., Abdulrahman, Y., Chen, R., Garcia, J.A., Shelton, J.M., Richardson, J.A., Ashour, A.M., Asaithamby, A., Liang, H., Xing, C., Lu, Z., Zhang, C.C., and Sadek, H.A., Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart, Nature, 2015, vol. 523, pp. 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Kostina, D.A., Voronkina, I.V., Smagina, L.V., Gavriliuk, N.D., Moiseeva, O.M., Irtiuga, O.B., Uspensky, V.E., Kostareva, A.A., and Malashicheva, A.B., Functional properties of smooth muscle cells in ascending aortic aneurysm, Cell Tissue Biol., 2014, vol. 8, no. 1, pp. 61–67.

    Article  Google Scholar 

  • Laugwitz, K.-L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.-Z., Cai, C.-L., Lu, M.M., Reth, M., Platoshyn, O., Yuan, J.X.-J., Evans, S., and Chien, K.R., Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages, Nature, 2005, vol. 433, pp. 647–653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le, T.Y.L. and Chong, J.J.H., Cardiac progenitor cells for heart repair, Nature Publishing Group, 2016, vol. 2, pp. 1–4.

    Google Scholar 

  • Linke, A., Müller, P., Nurzynska, D., Casarsa, C., Torella, D., Nascimbene, A., Castaldo, C., Cascapera, S., Bohm, M., Quaini, F., Urbanek, K., Leri, A., Hintze, T.H., Kajstura, J., and Anversa, P., Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 8966–8971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moccetti, T., Leri, A., Goichberg, P., Rota, M., and Anversa, P., A novel class of human cardiac stem cells, Cardiol. Rev., 2015, vol. 23, pp. 189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakada, Y., Canseco, D.C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C.X., Shah, A.M., Zhang, H., Faber, J.E., Kinter, M.T., Szweda, L.I., Xing, C., Hu, Z., Deberardinis, R.J., Schiattarella, G., Hill, J.A., Oz, O., Lu, Z., Zhang, C.C., Kimura, W., and Sadek, H.A., Hypoxia induces heart regeneration in adult mice, Nature, 2016, vol. 541, pp. 1–21.

    Google Scholar 

  • Oh, H., Bradfute, S.B., Gallardo, T.D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L.H., Behringer, R.R., Garry, D.J., Entman, M.L., and Schneider, M.D., Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 12313–12318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perepelina, K.I., Smolina, N.A., Zabirnik, A.S., Dmitrieva, R.I., Malashicheva, A.B., and Kostareva, A.A., The role of LMNA mutations in myogenic differentiation of primary satellite cells and C2C12 cells, Cell Tissue Biol., 2017, vol. 11, no. 3, pp. 213–219.

    Article  Google Scholar 

  • Reed, G.W., Rossi, J.E., and Cannon, C.P., Acute myocardial infarction, Lancet, 2017, vol. 389, pp. 197–210.

    Article  PubMed  Google Scholar 

  • Severs, N.J., The cardiac muscle cell, BioEssays: News Rev. Mol. Cell. Devel. Biol., 2000, vol. 22, pp. 188–199.

    Article  CAS  Google Scholar 

  • Smith, R.R., Barile, L., Cho, H.C., Leppo, M.K., Hare, J.M., Messina, E., Giacomello, A., Abraham, M.R., and Marbán, E., Regenerative potential of cardiospherederived cells expanded from percutaneous endomyocardial biopsy specimens, Circulation, 2007, vol. 115, pp. 896–908.

    Article  PubMed  CAS  Google Scholar 

  • Towbin, J.A., Scarring in the heart—a reversible phenomenon?, New England J. Med., 2007, vol. 357, pp. 1767–1768.

    Article  CAS  Google Scholar 

  • Urbanek, K., Torella, D., Sheikh, F., De Angelis, A., Nurzynska, D., Silvestri, F., Beltrami, C.A., Bussani, R., Beltrami, A.P., Quaini, F., Bolli, R., Leri, A., Kajstura, J., and Anversa, P., Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 8692–8697.

    PubMed  CAS  Google Scholar 

  • Wessels, A. and Pérez-Pomares, J.M., The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells, Anat. Rec. Discov. Mol. Cell. Evol. Biol., 2004, vol. 276A, pp. 43–57.

    Article  Google Scholar 

  • Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Lagutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., and Sorrentino, B.P., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype, Nature Med., 2001, vol. 7, pp. 1028–1034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Malashicheva.

Additional information

Original Russian Text © P.M. Docshin, A.A. Karpov, Sh.D. Eyvazova, M.V. Puzanov, A.A. Kostareva, M.M. Galagudza, A.B. Malashicheva, 2018, published in Tsitologiya, 2018, Vol. 60, No. 2, pp. 81–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docshin, P.M., Karpov, A.A., Eyvazova, S.D. et al. Activation of Cardiac Stem Cells in Myocardial Infarction. Cell Tiss. Biol. 12, 175–182 (2018). https://doi.org/10.1134/S1990519X18030045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18030045

Keywords

Navigation