Skip to main content
Log in

The influence of sample preprocessing on in situ identification of 5-methylcytosine in metaphase chromosomes and interphase nuclei

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Qualitative and quantitative analysis of DNA methylation in situ at the level of cells, chromosomes, and the chromosomal domain is extremely important in diagnosis and treatment of various pathologies, as well in studies of aging and the effects of environmental factors. Yet, the questions remain unresolved of whether the detectable in situ methylation patterns correspond to the actual DNA methylation per se and/or reflect the accessibility of DNA to antibodies, which depends on the structural features of chromatin and chromosome condensation. Thus, this phenomenon can result in an incorrect determination of the real DNA methylation pattern. In order to eliminate this disadvantage to the extent possible, we modified the commonly used methodology of in situ detection methylcytosine by means of monoclonal antibodies. In this study, we show that the efficiency of immunofluorescent labeling for 5-methylcytosin in centromeric heterochromatin, chromosome arms and sister chromatids is significantly affected by the conditions of pretreatment of chromosome preparations. We used undifferentiated murine embryonic F9 cells to show that variations in the conditions of storage of chromosome preparations can lead to a sharp reduction of labeling intensity and even disappearance of the fluorescence signal in centromeric heterochromatin. Using the developed method, we discovered asymmetric methylation of sister chromatids in F9 cells and in human peripheral blood lymphocytes. This phenomena can lead to asymmetric cell division and asymmetric transcriptional status in daughter cells. Thus, the modified methodology for detection of 5-methyl cytosine in situ can provide for a more precise assessment of methylation of chromosomes and chromosomal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BrdU:

5-bromodeoxyuridine

DNMTase:

DNA methyltransferase

RT:

room temperature

MetCyt:

5-methylcytosine

SC:

sister chromatid

TelHet:

telomeric heterochromatin

CenHet:

centromeric heterochromatin

References

  • Alonso, A., Breuer, B., Steuer, B., and Fischer, J., The F9-EC cell line as a model for the analysis of differentiation, Int. J. Dev. Biol., 1991, vol. 35, pp. 389–397.

    CAS  PubMed  Google Scholar 

  • Baccarelli, A. and Bollati, V., Epigenetics and environmental chemicals, Curr. Opin. Pediatr., 2009, vol. 21, pp. 243–251.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baranov, V.S. and Kuznetsova, T.V., Tsitogenetika embrional’nogo razvitiya cheloveka (Cytogenetics of Human Embryonal Development), Leningrad: Nauka., 2006.

    Google Scholar 

  • Barbin, A., Montpellier, C., Kokalj-Vokac, N., Gibaud, A., Niveleau, A., Malfoy, B., Dutrillaux, B., and Bourgeois, C.A., New sites of methylcytosine-rich DNA detected on metaphase chromosomes, Hum. Genet., 1994, vol. 94, pp. 684–692.

    Article  CAS  PubMed  Google Scholar 

  • Bell, C.D., Is mitotic chromatid segregation random?, Histol. Histopathol., 2005, vol. 20, pp. 1313–1320.

    CAS  PubMed  Google Scholar 

  • Bianchi, N.O., Morgan, W.F., and Cleaver, J.E., Relationship of ultraviolet light-induced DNA-protein cross-linkage to chromatin structure, Exp. Cell Res., 1985, vol. 156, pp. 405–418.

    Article  CAS  PubMed  Google Scholar 

  • Bickmore, WA., Karyotype analysis and chromosome banding, in Encyclopedia of Life Sciences, 2001. Internet references, retrieved from Nature Publishing Group, 1–6. www.els.net

    Google Scholar 

  • Brock, G.J, Charlton, J., and Bird, A., Densely methylated sequences that are preferentially localized at telomereproximal regions of human chromosomes, Gene, 1999, vol. 240, pp. 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Darzynkiewicz, Z., Traganos, F., Sharpless, T., and Melamed, M.R., DNA denaturation in situ. Effect of divalent cations and alcohols, J. Cell Biol., 1976, vol. 68, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  • de Capoa, A., Grappelli, C., Febbo, F.R., Spanò, A., Niveleau, A., Cafolla, A., Cordone, I., and Foa, R., Methylation levels of normal and chronic lymphocytic leukemia B lymphocytes: computer-assisted quantitative analysis of anti-5methylcytosine antibody binding to individual nuclei, Cytometry, 1999, vol. 36, pp. 157–159.

    Article  PubMed  Google Scholar 

  • Fernandez-Peralta, A.M., Navarro, P., Tagarro, I., and Gonzalez-Aguilera, J.J., Digestion of human chromosomes by means of the isoschizomers MspI and HpaII, Genome, 1994, vol. 37, pp. 770–774.

    Article  CAS  PubMed  Google Scholar 

  • Garagna, S., Marziliano, N., Zuccotti, M., Searle, J.B., Capanna, E., and Redi, C.A., Pericentromeric organization at the fusion point of mouse robertsonian translocation chromosomes, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 171–175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalo, S., Jaco, I., Fraga, M.F., Chen, T., Li, E., Esteller, M., and Blasco, M.A., DNA methyltransferases control telomere length and telomere recombination in mammalian cells, Nat. Cell Biol., 2006, vol. 8, pp. 414–426.

    Article  Google Scholar 

  • Gupta, R., Nagarajan, A., and Wajapeyee, N., Advances in genome-wide DNA methylation analysis, Biotechniques, 2010, vol. 49, no. 4, pp. iii–xi. doi: 10.2144/000113493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haaf, T., Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development, Curr. Top Microbiol. Immunol., 2006, vol. 310, pp. 13–22.

    CAS  PubMed  Google Scholar 

  • Henikoff, S. and Furuyama, T., The unconventional structure of centromeric nucleosomes, Chromosoma, 2012, vol. 121, pp. 341–350.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong, K-S. and Lee, S., Estimating the total mouse DNA methylation according to the B1 repetitive elements, Biochem. Biophys. Res. Commun., 2005, vol. 335, pp. 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P.A. and Baylin, S.B., The fundamental role of epigenetic events in cancer, Nat. Rev. Genet., 2002, vol. 3, pp. 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, A., Mitchell, A.R., and Miller, O., The organization of the mouse satellite DNA at centromeres, Exp. Cell Res., 1989, vol. 183, pp. 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Kadauke, S. and Blobel, G.A., Mitotic bookmarking by transcription factors, Epigenetics Chromatin, 2013, vol. 6, p. 6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, J., Kim, J.-Y., and Issa, J.P., Aging and DNA methylation, Curr. Chem. Biol., 2009, vol. 3, pp. 321–329.

    Article  CAS  Google Scholar 

  • Klenov, M.S. and Gvozdev, V.A., Heterochromatin formation: role of short RNAs and DNA methylation, Biochemistry (Moscow), 2005, vol. 70, no. 11, pp. 1187–1198.

    Article  CAS  Google Scholar 

  • Komissarov, A.S., Gavrilova, E.V., Demin, S.J., Ishov, A.M., and Podgornaya, O.I., Tandemly repeated DNA families in the mouse genome, BMC Genomics, 2011, vol. 12, pp. 531–552.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lansdorp, P.M., Falconer, E., Tao, J., Brind’Amour, J., and Naumann, U., Epigenetic differences between sister chromatids?, Ann. N.Y. Acad. Sci., 2012, vol. 1266, pp. 1–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis, J.D., Meeham, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F., and Bird, A., Purification, sequence, and cellular localization of a novel chromosome protein that binds to methylated DNA, Cell, 1992, vol. 69, pp. 905–914.

    Article  CAS  PubMed  Google Scholar 

  • Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.M., Edsall, L., Antosiewicz-Bourget, J., Stewart, R., Ruotti, V., Millar, A.H., Thomson, J.A., Ren, B., and Ecker, J.R., Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, 2009, vol. 462, pp. 315–322.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mascetti, G., Carrara, S., and Vergani, L., Relationship between chromatin compactness and dye uptake for in situ chromatin stained with DAPI, Cytometry, 2001, vol. 44, pp. 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Metivier, R., Gallais, R., Tiffoche, C., Le Péron, C., Jurkowska, R.Z., Carmouche, R.P., Ibberson, D., Barath, P., Demay, F., Reid, G., Benes, V., Jeltsch, A., Gannon, F., and Salbert, G., Cyclical DNA methylation of a transcriptionally active promoter, Nature, 2008, vol. 452, pp. 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Mezzanotte, R., Vanni, R., Flore, O., Ferrucci, L., and Sumner, AT., Ageing of fixed cytological preparations produces gradation of chromosomal DNA, Cytogenet. Cell Genet., 1988, vol. 48, pp. 60–62.

    Article  CAS  PubMed  Google Scholar 

  • Miniou, P., Jeanpierre, M., Bourchis, D., Coutinho, Barbosa, A.C., Blanquet, V., and Viegas-Péquignot, E., Alphasatellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal samples, Hum. Genet., 1997, vol. 99, pp. 738–745.

    Article  CAS  PubMed  Google Scholar 

  • Patkin, E.L., Asymmetry of sister chromatids methylation of preimplantation mouse embryo chromosomes as revealed by nick translation in situ, Cytogenet. Cell Genet., 1997, vol. 77, pp. 82.

    Google Scholar 

  • Patkin, E.L., Epigenetic mechanisms for primary differentiation in mammalian embryos, Int. Rev. Cytol., 2002, vol. 216, pp. 81–129.

    Article  CAS  PubMed  Google Scholar 

  • Patkin, E.L., Epigeneticheskie mekhanizmy rasprostranennykh zabolevanii cheloveka Epigenetic Mechanisms of the Common Human Diseases), St. Petersburg: NestorIstoriya, 2008.

    Google Scholar 

  • Patkin, E.L. and Sorokin, A.V., The level of chromosomal DNA methylation in mice in the early stages of embryogenesis studied by the action of restriction endonucleases on the chromosomes, Tsitologiia, 1992, vol. 34, no. 1, pp. 65–69.

    CAS  PubMed  Google Scholar 

  • Patkin, E.L.and Quinn, J., Epigenetical mechanisms of susceptibility to complex human diseases, Russ. J. Genet.: Appl. Res., 2011, vol. 1, pp. 436–447.

    Article  Google Scholar 

  • Patkin, E.L., Kustova, M.E., and Dyban, A.P., Spontaneous sister chromatid differentiation (SCD) and sister chromatid exchange (SCE) in mouse blastocyst chromosomes, Cytogenet. Cell Genet., 1994, vol. 66, pp. 31–32.

    Article  CAS  PubMed  Google Scholar 

  • Pendina, A.A., Efimova, O.A., Fedorova, I.D., Leont’eva, O.A., Shilnikova, E.M., Lezhnina, J.G., Kuznetzova, T.V., and Baranov, V.S., DNA methylation patterns of metaphase chromosomes in human preimplantation embryos, Cytogenet. Genome Res., 2011, vol. 132, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Plohl, M., Luchetti, A., Meštrovi, N., and Mantovani, B., Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin, Gene, 2008, vol. 409, pp. 72–82.

    Article  CAS  PubMed  Google Scholar 

  • Pogribny, I., Raiche, J., Slovack, M., and Kovalchuk, O., Dose-dependence, sexand tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes, Biochem. Biophys. Res. Commun., 2004, vol. 320, pp. 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  • Rougier, N., Bourchis, D., Gomes, D.M., Niveleau, A., Plachot, M., Pàldi, A., and Viegas-Péquignot, E., Chromosome methylation patterns during mammalian preimplantation development, Genes Devel., 1998, vol. 12, pp. 2108–2113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salozhin, S.V., Prokhorchuk, E.B., and Georgiev, G.P., Methylation of DNA—one of the major epigenetic markers, Biochemistry (Moscow), 2005, vol. 70, no. 5, pp. 525–532.

    Article  CAS  Google Scholar 

  • Santos, F. and Dean, W., Using immunofluorescence to observe methylation changes in mammalian preimplantation embryos, Methods Mol. Biol., 2006, vol. 325, pp. 129–137.

    CAS  PubMed  Google Scholar 

  • Sasai, N., and Defossez, P.A., Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes, Int. J. Dev. Biol., 2009, vol. 53, pp. 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Sasina, L.K., Fedorova, E.M., Grudinina, N.A., Belotserkovskaya, E.V., Solovyov, K.V., Suchkova, I.O., and Patkin, E.L., Modulation of reporter EGFP gene expression by a disease-associated human intra-intronic minisatellite upon transient and stable transfection, Int. J. Biol. Engin., 2013, vol. 3, pp. 1–10.

    Google Scholar 

  • Schneider, L., and d’Adda di Fagagna, F., Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation, Nucl. Acids Res., 2012, vol. 40, pp. 5332–5342.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suchkova, I.O., Baranova, T.V., Kustova, M.E., Kisljakova, T.V., Vassiliev, V.B., Slominskaja, N.A., Alenina, N.V., and Patkin, E.L., Bovine satellite DNA induces heterochromatinization of host chromosomal DNA in cells of transsatellite mouse embryonal carcinoma, Tsitologiia, 2004, vol. 46, pp. 53–61.

    CAS  PubMed  Google Scholar 

  • Tajbakhsh, S., Rocheteau, P., and Le Roux, I., Asymmetric cell divisions and asymmetric cell fates, Annu. Rev. Cell Dev. Biol., 2009, vol. 25, pp. 671–699.

    Article  CAS  PubMed  Google Scholar 

  • Teubner, B. and Schulz, W.A., Exemption of satellite DNA from demethylation in immortalized differentiated derivatives of F9 mouse embryonal carcinoma cells, Exp. Cell Res., 1994, vol. 210, pp. 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Tran, V., Feng, L., and Chen, X., Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions, Chromosome Res., 2013, vol. 21, pp. 255–269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanyushin, B.F., DNA methylation and epigenetics, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 1186–1199.

    Article  Google Scholar 

  • Xu, N., Azziz, R., and Goodarzi, M.O., Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation, Fert. Steril., 2010, vol. 94, pp. 781–783.

    Article  CAS  Google Scholar 

  • Yates, P.A., Robert, W. Burman, R.W., Mummaneni, P. Krussel, S., and Turker, M.S., Turker tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation, J. Biol. Chem., 1999, vol. 274, pp. 36357–36361.

    Article  CAS  PubMed  Google Scholar 

  • Zaitseva, I., Zaitsev, S., Alenina, N., Bader, M., and Krivokharchenko, A., Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro, Mol. Reprod. Dev., 2007, vol. 74, pp. 1255–1261.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Patkin.

Additional information

Original Russian Text © N.A. Grudinina, L.K. Sasina, E.M. Noniashvili, E.G. Neronova, L.I. Pavlinova, I.A. Suchkova, G.A. Sofronov, E.L. Patkin, 2015, published in Tsitologiya, 2015, Vol. 57, No. 8, pp. 592–601.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grudinina, N.A., Sasina, L.K., Noniashvili, E.M. et al. The influence of sample preprocessing on in situ identification of 5-methylcytosine in metaphase chromosomes and interphase nuclei. Cell Tiss. Biol. 9, 493–503 (2015). https://doi.org/10.1134/S1990519X15060036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15060036

Keywords

Navigation