Skip to main content
Log in

Spreading and actin cytoskeleton organization of cartilage and bone marrow stromal cells cocultured on various extracellular matrix proteins

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Interactions between bone marrow stromal cells (BMSCs) and cartilage cells were studied in cell cocultures. Actin cytoskeleton organization and the cell spreading on various extracellular matrix proteins (laminin 2/4, collagen type I, and fibronectin) were explored. It was found that the most pronounced morphological changes (cell shape and area, actin cytoskeleton organization) were observed in cells cultivated on fibronectin. The average spreading area of BMSCs grown on fibronectin was about four times larger than the spreading area of cartilage cells. In cocultures of these cells plated in a ratio of 1: 1, the cell spreading area on fibronectin proved to be 1.5 times less than was theoretically calculated. To clarify what influence cells have on each other, cell spreading in the conditioned medium was assayed. It was round that the BMSC spreading area in a cartilage cell conditioned medium was significantly less than in the control serum-free medium. This shows that cartilage cells are the source of factors that affect BMSC spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

BMSC:

bone marrow stromal cell

References

  • Afanasjev, Yu.I. and Omelyanenko, N.P., Connective tissues, in Rukovodstvo po gistologii (Histology Manual), St. Petersburg: SpetsLit, 2001, vol. 1, pp. 249–283.

    Google Scholar 

  • Are, A., Pinaev, G., Burova, E., and Lindberg, U., Attachment of A-431 cells on immobilized antibodies to the EGF receptor promotes cell spreading and reorganization of the microfilament system, Cell Motil. Cytoskeleton, 2001, vol. 48, pp. 24–36.

    Article  CAS  PubMed  Google Scholar 

  • Are, A.F., Pospelova, T.V., and Pinaev, G.P., The characteristics of actin cytoskeleton structure and its rearrangements by extracellular matrix proteins in normal, immortalized and transformed rat fibroblasts, Tsitologiia, 1999, vol. 41, no. 8, pp. 707–715.

    CAS  PubMed  Google Scholar 

  • Brittberg, M., Peterson, L., Sjogren-Jansson, E., Tallheden, T., and Lindahl, A., Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments, Bone Joint Surg. Am., 2003, vol. 85-A, pp. 109–115.

    Google Scholar 

  • Chang, N.J., Lam, C.F., Lin, C.C., Chen, W.L., Li, C.F., Lin, Y.T., and Yeh, M.L., Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits, Osteoarthritis Cartilage, 2013, vol. 21, pp. 1613–1622.

    Article  PubMed  Google Scholar 

  • Dai, W., Kawazoe, N., Lin, X., Dong, J., and Chen, G., The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering, Biomaterials, 2010, vol. 31, pp. 2141–2152.

    Article  CAS  PubMed  Google Scholar 

  • Ermakova, I.I., Chertkova, T.A., Mokrushin, A.L., Romaniouk, A.V., Sakuta, G.A., and Morozov, V.I., Proteoglycans of L6J1 myoblast extracellular matrix. Characteristics and effect on myoblast adhesion, Tsitologiia, 2008, vol. 50, no. 8, pp. 692–699.

    CAS  PubMed  Google Scholar 

  • Galle, J., Bader, A., Hepp, P., Grill, W., Fuchs, B., Käs, J.A., Krinner, A., Marquass, B., Müller, K., Schiller, J., Schulz, R.M., von Buttlar, M., von der Burg, E., Zscharnack, M., and Löffler, M., Mesenchymal stem cells in cartilage repair: state of the art and methods to monitor cell growth, differentiation and cartilage regeneration, Curr. Med. Chem., 2010, vol. 17, pp. 2274–2291.

    Article  CAS  PubMed  Google Scholar 

  • Ganey, T., Hutton, W.C., Moseley, T., Hedrick, M., and Meisel, H.J., Intervertebral disc repair using adipose tissuederived stem and regenerative cells: experiments in a canine model, Spine, 2009, vol. 34, pp. 2297–2304.

    Article  PubMed  Google Scholar 

  • Hall, B.K., Cartilage, Vol. 1: Structure, Function, and Biochemistry, New York: Academic Press, 1983.

    Google Scholar 

  • Han, Y.L., Wang, S., Zhang, X., Li, Y., Huang, G., Qi, H., Pingguan-Murphy, B., Lu, T.J., Xu, F., Engineering physical microenvironment for stem cell based regenerative medicine, Drug Discov. Today, 2014, vols. 1359–6446, pp. 00033–00036.

    Google Scholar 

  • Hui, J.H.P., Azura, M., and Lee, E.H., Review article: stem cell therapy in orthopaedic surgery: current status and ethical considerations, Malaysian Orthopaedic J., 2009, vol. 3, pp. 4–12.

    Article  Google Scholar 

  • Imoto, E., Kakuta, S., Hori, M., Yagami, K., and Nagumo, M., Adhesion of a chondrocytic cell line (USAC) to fibronectin and its regulation by proteoglycan, Oral Pathol. Med., 2002, vol. 31, pp. 35–44.

    Article  CAS  Google Scholar 

  • Khubutiya, M.Sh., Kliukvin, I.Y., Istranov, L.P., Khvatov, V.B., Shekhter, A.B., Vaza, A.Y., Kanakov, I.V., and Bocharova, V.S., Stimulation of regeneration of hyaline cartilage in experimental osteochondral injury, Bull. Exp. Biol. Med., 2008, vol. 146, pp. 658–661.

    Article  CAS  PubMed  Google Scholar 

  • Koga, H., Muneta, T., Ju, Y.-J., Nagase, T., Nimura, A., Mochizuki, T., Ichinose, S., von der Mark, K., and Sekiya, I., Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration, Stem Cells, 2007, vol. 25, pp. 689–696.

    Article  CAS  PubMed  Google Scholar 

  • Kopesky, P.W., Lee, H.Y., Vanderploeg, E.J., Kisiday, J.D., Frisbie, D.D., Plaas, A.H., Ortiz, C., and Grodzinsky, A.J., Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes, Matrix Biol., 2010, vol. 29, pp. 427–438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pörtner, R. and Meenen, N.M., Technological aspects of regenerative medicine and tissue engineering of articular cartilage, Handchir. Mikrochir. Plast. Chir., 2010, vol. 42, pp. 329–336.

    Article  PubMed  Google Scholar 

  • Palm, S.L. and Furcht, L.T., Production of laminin and fibronectin by schwannoma cells: cell-protein interactions in vitro and protein localization in peripheral nerve in vivo, Cell Biol., 1983, vol. 96, pp. 1218–1266.

    Article  CAS  Google Scholar 

  • Parsons, P., Gilbert, S.J., Vaughan-Thomas, A., Sorrell, D.A., Notman, R., Bishop, M., Hayes, A.J., Mason, D.J., and Duance, V.C., Type IX collagen interacts with fibronectin providing an important molecular bridge in articular cartilage, Biol. Chem., 2011, vol. 286, pp. 34986–34997.

    Article  CAS  Google Scholar 

  • Petukhova, O.A., Turoverova, L.V., Kropacheva, I.V., and Pinaev, G.P., Morphological peculiarities of epidermoid carcinoma A431 cells spread on immobilized ligands, Tsitologiia, 2004, vol. 46, no. 1, pp. 5–15.

    CAS  PubMed  Google Scholar 

  • Richardson, S.M., Hoyland, J.A., and Mobasheri, R., Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering, Cell. Physiol., 2010, vol. 222, pp. 23–32.

    Article  CAS  Google Scholar 

  • Tobita, M., Ochi, M., Uchio, Y., Mori, R., Iwasa, J., Katsube, K., and Motomura, T., Treatment of growth plate injury with autogenous chondrocytes, Acta Orthop. Scand., 2002, vol. 73, pp. 352–358.

    Article  PubMed  Google Scholar 

  • Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., and Sekiya, I., Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle, Cell Tissue Res., 2007, vol. 327, pp. 449–462.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Sachenberg.

Additional information

Original Russian Text © E.I. Sachenberg, N.N. Nikolaenko, G.P. Pinaev, 2014, published in Tsitologiya, 2014, Vol. 56, No. 10, pp. 708–716.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachenberg, E.I., Nikolaenko, N.N. & Pinaev, G.P. Spreading and actin cytoskeleton organization of cartilage and bone marrow stromal cells cocultured on various extracellular matrix proteins. Cell Tiss. Biol. 9, 1–8 (2015). https://doi.org/10.1134/S1990519X15010083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15010083

Keywords

Navigation